PROGRESS IN GEOGRAPHY ›› 2012, Vol. 31 ›› Issue (10): 1307-1317.doi: 10.11820/dlkxjz.2012.10.008
• Original Articles • Previous Articles Next Articles
SONG Ci, PEI Tao
Received:
2011-10-01
Revised:
2012-03-01
Online:
2012-10-25
Published:
2012-10-25
SONG Ci, PEI Tao. Research Progress in Time Series Clustering Methods Based on Characteristics[J].PROGRESS IN GEOGRAPHY, 2012, 31(10): 1307-1317.
[1] Shumway R H, Stoffer D S. Time Series Analysis and ItsApplications with R Examples. New York: Springer,2009.[2] Han J W, Kamber M. Data Mining: Concepts and techniques.Singapore: Elsevier, 2006.[3] Košmelj K, Batagelj V. Cross-sectional approach forclustering time varying data. Journal of Classification1990, 7: 99-109.[4] Balasubramaniyan R, Hüllermeier E, Weskamp N, et al.Clustering of gene expression data using a localshape-based similarity measure. Bioinformatics 2005, 21(7): 1069-1077.[5] Liao T W. Clustering of time series data: A survey. PatternRecognition 2005, 38(11): 1857-1874.[6] Díaz S P, Vilar J A. Comparing several parametric andnonparametric approaches to time series clustering: Asimulation study. Journal of Classification, 2010, 27(3):333-362.[7] Keogh E J, Pazzani M J. An enhanced representation oftime series which allows fast and accurate classification,Clustering and Relevance Feedback//Procs. of the 4thConference on Knowledge Discovery in Databases,1998: 239-241.[8] Chen Y G, Nascimento M A, Ooi B C, et al. SpADe: Onshape-based pattern detection in streaming time series//Proceedings of the 23rd International Conference on DataEngineering, IEEE, 2007: 786-795.[9] Wang X Z, Smith K, Hyndman R. Characteristic-basedclustering for time series data. Data Mining and KnowledgeDiscovery, 2006, 13(3): 335-364.[10] Rose O. Estimation of the Hurst Parameter ofLong-Range Dependent Time Series. Research Report,1996.[11] Hilborn R C, Ottino J M, Shinbrot T. Chaos and nonlineardynamics: An introduction for scientists and engineers.AIChE Journal 1995, 41(7): 1831-1832.[12] Tian Z, Raghu R, Miron L. BIRCH: An efficient dataclustering method for very large databases. SIGMODRec, 1996, 25(2): 103-114.[13] Karypis G, Han S, Kumar V. Chameleon: Hierarchicalclustering using dynamic modeling. IEEE Computer,1999, 32(8): 68-75.[14] Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS:Ordering points to identify the clustering structure. SIGMODRec, 1999, 28(2): 49-60.[15] Wang W, Yang J, Muntz R. STING: A statistical informationgrid approach to spatial data mining//Proceedings ofthe 23rd Conference on VLDB, 1997: 186-195.[16] Biernacki C, Celeux G, Govaert G. Assessing a mixturemodel for clustering with the integrated completed likelihood.IEEE Trans, 2000, 22(7): 719-725.[17] Keogh E, Ratanamahatana C A. Exact indexing of dynamictime warping. Knowledge and Information Systems,2005, 7(3): 358-386.[18] Möller-Levet C S, Klawonn F, Cho K H, et al. Clusteringof unevenly sampled gene expression time-series data.Fuzzy Sets and Systems, 2005, 152(1): 49-66.[19] Möller-Levet C S, Klawonn F, Cho K H, et al. Fuzzyclustering of short time-series and unevenly distributedsampling points//Proceedings of the 5th InternationalSymposium on Intelligent Data Analysis, Berlin, Germany,August 28-30, 2003.[20] Fu T C, Chung F L, Vincent N, et al. Pattern discoveryfrom stock time series using self-organizing maps//KDD2001 Workshop on Temporal Data Mining. San Francisco,2001: 27-37.[21] Hsu K C, Li S T. Clustering spatial-temporal precipitationdata using wavelet transform and self-organizingmap neural network. Advances in Water Resources 2010,33(2): 190-200.[22] Lee J G, Han J W, Whang K Y. Trajectory clustering: apartition-and-group framework. Proceedings of ACMSIGMOD International Conference on Management ofData, 2007: 593-604.[23] Nanopoulos A, Alcock R, Manolopoulos Y. Featurebasedclassification of time-series data. International Journalof Computer Research, 2001: 49-61.[24] Ouyang R, Ren L, Cheng W, et al. Similarity search andpattern discovery in hydrological time series data mining.Hydrological Processes, 2010, 24(9): 1198-1210.[25] Kontaki M, Papadopoulos A N, Manolopoulos Y, et al.Continuous trend-based clustering in data streams. DataWarehousing and Knowledge Discovery, 2008, 5182:251-262.[26] Kumar M, Patel N R, Woo J. Clustering seasonality patternsin the presence of errors. in ACM KDD ConferenceProceedings, 2002: 557-563.[27] Wang X, Wirth A, Wang L. Structure-based statisticalfeatures and multivariate time series clustering//Proceedingsof the Seventh IEEE International Conference on DataMining, 2007: 351-360.[28] Caiado J, Crato N, Peña D. A periodogram-based metricfor time series classification. Computational Statistics &Data Analysis 2006, 50(10): 2668-2684.[29] Kakizawa Y, Shumway R H, Taniguchi M. Discriminationand Clustering for Multivariate Time Series. J. Amer.Stat. Assoc, 1998, 93(441): 328-340.[30] Shumway R H. Time-frequency clustering and discriminantanalysis. Statistics & Probability Letters, 2003, 63(3): 307-314.[31] Alonso A M, Berrendero J R, Hernández A, et al. Timeseries clustering based on forecast densities. ComputationalStatistics & Data Analysis, 2006, 51(2): 762-776.[32] Singhal A, Seborg D E. Clustering multivariate time-seriesdata. Journal of Chemometrics, 2005, 19(8):427-438.[33] Keogh E, Kasetty S. On the need for time series datamining benchmarks: A survey and empirical demonstration.Data Mining and Knowledge Discovery 2003, 7(4):349-371.[34] Piccolo D. A distance measure for classifying ARIMAmodels. Journal of Time Series Analysis, 1990, 11(2):153-164.[35] Maharaj E A. Cluster of time series. Journal of Classification,2000, 17(2): 297-314.[36] Maharaj E A. Comparison and classification of stationarymultivariate time series. Pattern Recognition, 1999,32(7): 1129-1138.[37] Ramoni M, Sebastiani P, Cohen P. Bayesian Clusteringby Dynamics. Machine Learning, 2002, 47(1): 91-121.[38] Ramoni M, Sebastiani P, Cohen P. Multivariate clusteringby dynamics//Proceedings of the Seventeenth NationalConference on Artificial Intelligence, 2000: 633-638.[39] Xiong Y, Yeung D Y. Mixtures of ARMA Models forModel-Based Time Series Clustering. Proceedings ofIEEE International Conference on Data Mining, 2002:717-720.[40] Bicego M, Murino V, Figueiredo M A T. Similarity-based clustering of sequences using hidden Markovmodels. Machine Learning and Data Mining in PatternRecognition, 2003, 2734: 86-95.[41] Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedingsof the IEEE 1989, 77(2): 257-286[42] Oates T, Firoiu L, Cohen P R. Clustering time serieswith hidden markov models and dynamic time warping.Proceedings of the IJCAI-99 Workshop on Neural, Symbolic,and Reinforcement Learning Methods for SequenceLearning, 1999.[43] Li C, Biswas G. Temporal Pattern Generation Using HiddenMarkov Model Based Unsupervised Classification.Advances in Intelligent Data Analysis., 1999: 245-256.[44] Li C, Biswas G, Dale M, et al. Building models of ecologicaldynamics using HMM based temporal data clustering:A preliminary study. Advances in Intelligent DataAnalysis, 2001: 53-62, doi: 10.1007/3-540-44816-0_6.[45] Jain A K. Data clustering: 50 years beyond K-means.Pattern Recognition Letters, 2009, 31(8): 651-666.[46] Wang N Y, Chen S M. Temperature prediction and TAIFEXforecasting based on automatic clustering techniquesand two-factors high-order fuzzy time series. ExpertSystems with Applications, 2009, 36(2): 2143-2154.[47] FrÄuhwirth-Schnatter S. Model-based clustering of timeseries: A rview from a Bayesian perspective. Manuscript,2011.[48] Pakhira M K, Bandyopadhyay S, Maulik U. Validity indexfor crisp and fuzzy clusters. Pattern Recognition2004, 37(3): 487-501. |
[1] | HUANG Yingze, QIU Bingwen, HE Yuhua, ZHANG Ke, ZOU Fengli. Optimal elevation interval of rice expansion in Northeast China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1557-1564. |
[2] | CHEN Xiao, HUANG Yujin, LI Jiahui, WANG Shiyang, PEI Tao. Clustering characteristics of COVID-19 cases and influencing factors in Chongqing Municipality [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1798-1808. |
[3] | Mingqing MA, Wu YUAN, Quansheng GE, Wen YUAN, Linsheng YANG, Hanqing LI, Meng LI. Big data analysis of social development situation in regions along the Belt and Road [J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1009-1020. |
[4] | Weijing ZHONG, De WANG. Urban space study based on the temporal characteristics of residents' behavior [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1106-1118. |
[5] | Xizhang GAO, Wenjie FAN, Shuying LENG. Young Scientist Fund of the National Natural Science Foundation of China in geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 174-182. |
[6] | Jiufeng LI, Huafei YU, Yingchun FU, Yaolong ZHAO. Spatial-temporal changes of population-economy-land-society-ecology coordination level of urbanization and clustering: A case of Guangdong Province, China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 287-298. |
[7] | Xuefeng GUAN, Yumei ZENG. Research progress and trends of parallel processing, analysis, and mining of big spatiotemporal data [J]. PROGRESS IN GEOGRAPHY, 2018, 37(10): 1314-1327. |
[8] | Weishi YANG, Danhuai GUO, Yanling LU, Deqiang WANG, Yinqiu ZHU, Baoxiu ZHANG. Analyzing perception of cultural heritage sites based on big data: A case study of Beijing Central Axis [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1111-1118. |
[9] | Sihui GUO, Congcong WEN, Yun HE, Tao PEI. Relationship between travel behavior and income level of urban residents:A case study in Shanghai Municipality [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1158-1166. |
[10] | Kun QIN, Qing ZHOU, Yuanquan XU, Wenting XU, Ping LUO. Spatial interaction network analysis of urban traffic hotspots [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1149-1157. |
[11] | Xun ZHANG, Jianzhang CHEN, Jinchuan HUANG, Chongchong YU, Xiuxin CHEN. Multi-level spatial structure analysis of urban agglomeration in the Beijing-Tianjin-Hebei region based on spatial clustering algorithms [J]. PROGRESS IN GEOGRAPHY, 2017, 36(11): 1359-1367. |
[12] | Qiang AN, Zhaoping YANG, Xiaoliang XU, Hui SHI, Lu ZHANG. Spatial correlation of poverty and tourism resources in three prefactures in South Xinjiang [J]. PROGRESS IN GEOGRAPHY, 2016, 35(4): 515-525. |
[13] | Deqin FAN, Xuesheng ZHAO, Wenquan ZHU, Zhoutao ZHENG. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 304-319. |
[14] | Xi HUANG, Zhonggen WANG, Yanfang SANG, Moyuan YANG, Xiaocong LIU, Tongliang GONG. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 339-348. |
[15] | Qin YIN, Bin MENG, Liying ZHANG. Classification of subway stations in Beijing based on passenger flow characteristics [J]. PROGRESS IN GEOGRAPHY, 2016, 35(1): 126-134. |
|