[1] 赵英时. 遥感应用分析原理与方法. 北京: 科学出版社, 2003.
[2] 赖志斌, 夏曙东, 承继成. 高分辨率遥感卫星数据在城 市生态环境评价中的应用模型研究. 地理科学进展, 2000, 19(4): 359-365.
[3] 李亚云, 杨秀春, 朱晓华, 等. 遥感技术在中国土地荒漠 化监测中的应用进展. 地理科学进展, 2009, 28 (1): 55- 62.
[4] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987, 21(3): 311-322.
[5] Roberts D A, Smith M O, Adams J B. Green vegetation, nonphotosynthetic vegetation, and soils in aviris data. Remote Sensing of Environment, 1993, 44(2-3): 255-269.
[6] Smith M O, Ustin S L, Adams J B, et al. Vegetation in deserts: I. a regional measure of abundance from multispectral images. Remote Sensing of Environment, 1990, 31(1): 1-26.
[7] Small C. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 2001, 22(7): 1305-1334.
[8] Green A A, Berman M, Switzer P et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74.
[9] Chang C I, Plaza A. A fast iterative algorithm for implementation of pixel purity index. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 63-67.
[10] Plaza A, Chang C I. Fast implementation of pixel purity index algorithm. SPIE Symposium on Defense and Security, XI Conference on Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery, 2005.
[11] Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing. Remote Sensing of Environment, 1996, 55(3): 229-243.
[12] Lelong C C D, Pinet P C, Poilv H. Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce(France). Remote Sensing of Environment, 1998, 66(2): 179-191.
[13] Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[14] Gruninger J, Ratkowski A J, Hoke M L. The sequential maximum angle convex cone (SMACC) endmember model. Proceedings SPIE, Algorithms for Multispectral and Hyper- spectral and Ultraspectral Imagery, 2004.
[15] Plaza A, Chang C I. An improved N-FINDR algorithm in implementation. SPIE Symposium on Defense and Security, XI Conference on Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery, 2005.
[16] 夏学齐, 田庆久, 杜凤兰. 高光谱遥感图像的单形体分 析方法. 中国图象图形学报, 2004(12): 1486-1491.
[17] Bastin L. Comparison of fuzzy c-means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 1997, 18(17): 3629-3648.
[18] Holben B N, Shimabukuro Y E. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors. International Journal of Remote Sensing, 1993, 14(11): 2231-2240.
[19] Keshava N, Mustard J F. Spectral unmixing. Signal Processing Magazine, IEEE, 2002, 19(1): 44-57.
[20] Ray T W, Murray B C. Nonlinear spectral mixing in desert vegetation. Remote Sensing Of Environment, 1996, 55(1): 59-64.
[21] Cross A M, Settle J J, Drake N A, et al. Subpixel measurement of tropical forest cover using avhrr data. International Journal of Remote Sensing, 1991,12(5): 1119-1129.
[22] Quarmby N A, Townshend J R G, et al. Linear mixture modelling applied to AVHRR data for crop area estimation. International Journal of Remote Sensing, 1992, 13 (3): 415-425.
[23] Boardman J W. Geometric mixture analysis of imaging spectrometry data. IEEE International Geoscience and Remote sensing Symposium, 1994: 2369-2371.
[24] Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely -sensed data. International Journal of Remote Sensing, 1996, 17 (7): 1317-1340.
[25] Masell F, Rodolfi A, Conese C. Fuzzy classification of spatially degraded thematic mapper data for the estimation of sub -pixel components. International Journal of Remote Sensing, 1996, 17(3): 537-551.
[26] 黄昕, 张良培, 李平湘. 基于多尺度特征融合和支持向 量机的高分辨率遥感影像分类. 遥感学报, 2007, 11(1): 48-54.
[27] Brown M, Gunn S R, Lewis H G. Support vector machines for optimal classification and spectral unmixing. Ecological Modelling, 1999, 120(2-3): 167-179.
[28] 吴波, 张良培, 李平湘. 基于支撑向量回归的高光谱混 合像元非线性分解. 遥感学报, 2006, 10(3): 312-318.
[29] Foody G M, Lucas R M, Curran P J et al. Non -linear mixture modelling without end-members using an artificial neural network. International Journal of Remote Sensing, 1997, 18(4): 937-953.
[30] Carpenter G A, Gopal S, Macomber S et al. A neural network method for mixture estimation for vegetation mapping. Remote Sensing of Environment, 1999, 70 (2): 138- 152.
[31] 张彦, 邵美珍. 基于径向基函数神经网络的混合像元分 解. 遥感学报, 2002, 6(4): 285-288.
[32] 徐宏根, 马洪超, 李德仁. 结合SOM 神经网络和混合像 元分解的高光谱影像分类方法研究. 遥感学报, 2007, 11(6): 778-786.
[33] 吴柯, 张良培, 李平湘. 一种端元变化的神经网络混合 像元分解方法. 遥感学报, 2007, 11(1): 20-26.
[34] Li L, Ustin S L, Lay M. Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh apping: a case study in China Camp, CA, USA. International Journal of Remote Sensing, 2005, 26(23): 5193-5207.
[35] Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 1998, 65(3): 267-279.
[36] García -Haro F J, Sommer S, Kemper T. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 2005, 26(10): 2135-2162.
[37] Franke J, Roberts D A, Halligan K, et al. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environment, 2009, 113(8): 1712-1723.
[38] Mei T, Mertins A, Yin F, et al. Blind source separation for convolutive mixtures based on the joint diagonalization of power spectral density matrices. Signal Processing, 2008, 88(8): 1990-2007.
[39] Bijaoui A, Nuzillard D, Barma T D. Bss, classification and pixel demixing. Proceedings of the 5th International Conference on Independent Component Analysis and Blind Source Separation, 2004: 96-103.
[40] 芮挺, 王金岩, 沈春林, 等. 基于线性分析的特征不变性 目标识别. 计算机工程, 2005, 31(15): 4-6.
[41] Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13 (4- 5): 411-430.
[42] Tu T M. Unsupervised signature extraction and separation in hyperspectral images: A noise -adjusted fast independent component analysis approach. Optical Engineering, 2000, 39(4): 897-906.
[43] Zhang X, Chen C H. New independent component analysis method using higher order statistics with application to remote sensing images. Optical Engineering, 2002, 41 (7): 1717-1728.
[44] Wang J, Chang C I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (9): 2601-2616.
[45] Wang J, Chang C. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1586-1600.
[46] Attias H. Independent factor analysis. Neural Computation, 1999, 11(4): 803-851.
[47] Nascimento J M P, Dias J M B. Does independent component analysis play a role in unmixing hyperspectral data? IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 175-187.
[48] Bedini L, Herranz D, Salerno E et al. Separation of correlated astrophysical sources using multiple -lag data covariance matrices. EURASIP Journal on Applied Signal Processing, 2005, (15): 2400-2412.
[49] Caiafa C F, Proto A N. Separation of statistically dependent sources using an l2-distance non-gaussianity measure. Signal Processing, 2006, 86(11): 3404-3420.
[50] Caiafa C F, Salerno E, Proto A N, et al. Blind spectral unmixing by local maximization of non -gaussianity. Signal Processing, 2008, 88(1): 50-68.
[51] Kemp Z. Mapping sub -pixel boundaries from remotely sensed images, Atkinson P M. Innovations in GIS. London: Taylor and Francis, 1997: 166-180.
[52] Atkinson P M. Super-resolution target mapping from soft classified remotely sensed imagery. Proceedings of the 5th International Conference on Geocomputation, 2001.
[53] Thornton M W, Atkinson P M, Holland D A.. A linearised pixel-swapping method for mapping rural linear land cover features from fine spatial resolution remotely sensed imagery. Computers & Geosciences, 2007, 33 (10): 1261- 1272.
[54] Makido Y, Shortridge A. Land Cover Mapping at Sub-Pixel Scales: Unraveling the Mixed Pixel. Proceedings of the 8th International Conference on Geocomputation, University of Michigan, Ann Arbor, Michigan, 2005.
[55] Thornton M W, Atkinson P M, Holland D A. Sub -pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel- swapping. International Journal of Remote Sensing, 2006, 27(3): 473-491.
[56] Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution target identification from remotely sensed images using a hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 781-796.
[57] Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution land cover pattern prediction using a hopfield neural network. Remote Sensing of Environment, 2002, 79(1): 1- 14.
[58] Tatem A J, Lewis H G, Atkinson P M, et al. Increasing the spatial resolution of agricultural land cover maps using a hopfield neural network. International Journal of Geographical Information Science, 2003, 17(7): 647-672.
[59] Aplin P, Atkinson P M, Curran P J. Fine spatial resolution simulated satellite sensor imagery for land cover mapping in the UK. Remote Sensing of Environment, 1999, 68(3): 206-216.
[60] Aplin P, Atkinson P M. Sub-pixel land cover mapping for per -field classification. International Journal of Remote Sensing, 2001, 22(14): 2853-2858.
[61] Mertens K C, Verbeke L P C, Ducheyne E I, et al. Using genetic algorithms in sub -pixel mapping. International Journal of Remote Sensing, 2003, 24(21): 4241-4247.
[62] Mertens K C, Verbeke L P C, Westra T, et al. Sub-pixel mapping and sub -pixel sharpening using neural network predicted wavelet coefficients. Remote Sensing of Environment, 2004, 91(2): 225-236.
|