PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (1): 79-88.doi: 10.18306/dlkxjz.2023.01.007
• Articles • Previous Articles Next Articles
WANG Chenggang1(), WANG Bo2,3,*(
), WANG Qizhi2, LEI Yaqin2
Received:
2022-06-03
Revised:
2022-08-20
Online:
2023-01-28
Published:
2023-03-28
Contact:
WANG Bo
E-mail:vitovito@qq.com;wangbo68@mail.sysu.edu.cn
Supported by:
WANG Chenggang, WANG Bo, WANG Qizhi, LEI Yaqin. Nonlinear associations between urban vitality and built environment factors and threshold effects: A case study of central Guangzhou City[J].PROGRESS IN GEOGRAPHY, 2023, 42(1): 79-88.
Tab.1
Variable definition and descriptive statistics
变量 | 描述 | 平均值 | 标准差 | 最小值 | 最大值 | |
---|---|---|---|---|---|---|
城市活力 | 百度热力指数 | 381.30 | 79.33 | 36.28 | 531.75 | |
建设强度 | 建筑密度 | 建筑基底面积/用地面积 | 0.43 | 0.19 | 0 | 1.00 |
容积率 | 建筑总面积/用地面积 | 2.46 | 1.40 | 0 | 9.41 | |
功能性质 | 居住设施密度 | 居住设施POI密度(个/km2) | 22.82 | 25.22 | 0 | 193.00 |
办公设施密度 | 办公设施POI密度(个/km2) | 112.48 | 120.26 | 0 | 1232.00 | |
休闲设施密度 | 休闲设施POI密度(个/km2) | 141.18 | 160.45 | 0 | 1026.00 | |
功能混合度 | 0.56 | 0.20 | 0.11 | 1.00 | ||
交通可达性 | 路网密度 | 道路长度/用地面积(km/km2) | 0.94 | 1.58 | 0 | 11.50 |
公交密度 | 公交线路数量×公交站点数量/用地面积(个/km2) | 78.82 | 69.69 | 0 | 431.69 | |
地铁可达性 | 网格中心到最近地铁站的直线距离(km) | 0.62 | 0.44 | 0.32 | 1.20 |
Tab.2
Relative contribution of independent variables to urban vitality
变量 | 工作日白天 | 工作日夜间 | ||||
---|---|---|---|---|---|---|
重要性/% | 排名 | 重要性/% | 排名 | |||
建设 强度 | 建筑密度 | 3.79 | 7 | 5.36 | 4 | |
容积率 | 33.29 | 1 | 34.79 | 1 | ||
功能 性质 | 休闲设施密度 | 24.16 | 2 | 30.38 | 2 | |
居住设施密度 | 0.22 | 9 | 0.10 | 9 | ||
办公设施密度 | 6.16 | 4 | 0.57 | 8 | ||
功能混合度 | 2.61 | 8 | 2.18 | 7 | ||
交通可达性 | 路网密度 | 4.35 | 6 | 3.91 | 6 | |
公交密度 | 20.75 | 3 | 18.63 | 3 | ||
地铁可达性 | 5.37 | 5 | 4.08 | 5 |
[1] | Jacobs J. The death and life of great American cities[M]. New York, USA: Random House, 1961. |
[2] | Whyte W H. The social life of small urban spaces[M]. Washington D C, USA: Conservation Foundation, 1980. |
[3] | Lynch K. A theory of good city form[M]. Cambridge, USA: The MIT Press, 1982. |
[4] | Gehl J. Life between buildings: Using public space[M]. Washington D C, USA: Island Press, 1987. |
[5] |
Montgomery J. Making a city: Urbanity, vitality and urban design[J]. Journal of Urban Design, 2007, 3(1): 93-116.
doi: 10.1080/13574809808724418 |
[6] |
Wu C, Ye X Y, Ren F, et al. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China[J]. Cities, 2018, 77: 104-116.
doi: 10.1016/j.cities.2018.01.017 |
[7] |
Glaeser E. Cities, productivity, and quality of life[J]. Science, 2011, 333: 592-594.
doi: 10.1126/science.1209264 pmid: 21798941 |
[8] |
塔娜, 曾屿恬, 朱秋宇, 等. 基于大数据的上海中心城区建成环境与城市活力关系分析[J]. 地理科学, 2020, 40(1): 60-68.
doi: 10.13249/j.cnki.sgs.2020.01.008 |
[Ta Na, Zeng Yutian, Zhu Qiuyu, et al. Relationship between built environment and urban vitality in Shanghai downtown area based on big data. Scientia Geographica Sinica, 2020, 40(1): 60-68. ]
doi: 10.13249/j.cnki.sgs.2020.01.008 |
|
[9] |
王波, 雷雅钦, 汪成刚, 等. 建成环境对城市活力影响的时空异质性研究: 基于大数据的分析[J]. 地理科学, 2022, 42(2): 274-283.
doi: 10.13249/j.cnki.sgs.2022.02.009 |
[Wang Bo, Lei Yaqin, Wang Chenggang, et al. The spatio-temporal impacts of the built environment on urban vitality: A study based on big data. Scientia Geographica Sinica, 2022, 42(2): 274-283. ]
doi: 10.13249/j.cnki.sgs.2022.02.009 |
|
[10] |
Wang B, Lei Y, Xue D, et al. Elaborating spatiotemporal associations between the built environment and urban vibrancy: A case of Guangzhou City, China[J]. Chinese Geographical Science, 2022, 32(3): 480-492.
doi: 10.1007/s11769-022-1272-6 |
[11] |
邹思聪, 张姗琪, 甄峰. 基于居民时空行为的社区日常活动空间测度及活力影响因素研究: 以南京市沙洲、南苑街道为例[J]. 地理科学进展, 2021, 40(4): 580-596.
doi: 10.18306/dlkxjz.2021.04.004 |
[Zou Sicong, Zhang Shanqi, Zhen Feng. Measurement of community daily activity space and influencing factors of vitality based on residents' spatiotemporal behavior: Taking Shazhou and Nanyuan streets in Nanjing as examples. Progress in Geography, 2021, 40(4): 580-596. ]
doi: 10.18306/dlkxjz.2021.04.004 |
|
[12] |
Yue Y, Zhuang Y, Yeh A G O, et al. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy[J]. International Journal of Geographical Information Science, 2017, 31(4): 658-675.
doi: 10.1080/13658816.2016.1220561 |
[13] |
Huang B, Zhou Y L, Li Z G, et al. Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study[J]. Environment and Planning B: Urban Analytics and City Science, 2019, 47(9): 1543-1559.
doi: 10.1177/2399808319828730 |
[14] |
王波, 甄峰, 张浩. 基于签到数据的城市活动时空间动态变化及区划研究[J]. 地理科学, 2015, 35(2): 151-160.
doi: 10.13249/j.cnki.sgs.2015.02.151 |
[Wang Bo, Zhen Feng, Zhang Hao. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina web. Scientia Geographica Sinica, 2015, 35(2): 151-160. ]
doi: 10.13249/j.cnki.sgs.2015.02.151 |
|
[15] |
Loo B P Y, Wang B. Progress of e-development in China since 1998[J]. Telecommunications Policy, 2017, 41(9): 731-742.
doi: 10.1016/j.telpol.2017.03.001 |
[16] |
甄峰, 王波. “大数据”热潮下人文地理学研究的再思考[J]. 地理研究, 2015, 34(5): 803-811.
doi: 10.11821/dlyj201505001 |
[Zhen Feng, Wang Bo. Rethinking human geography in the age of big data. Geographical Research, 2015, 34(5): 803-811. ]
doi: 10.11821/dlyj201505001 |
|
[17] |
Delclòs-Alió X, Miralles-Guasch C. Looking at Barcelona through Jane Jacobs's eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation[J]. Land Use Policy, 2018, 75: 505-517.
doi: 10.1016/j.landusepol.2018.04.026 |
[18] |
Wu J Y, Ta N, Song Y, et al. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing[J]. Cities, 2018, 74: 100-108.
doi: 10.1016/j.cities.2017.11.008 |
[19] | 钮心毅, 吴莞姝, 李萌. 基于LBS定位数据的建成环境对街道活力的影响及其时空特征研究[J]. 国际城市规划, 2019, 34(1): 28-37. |
[Niu Xinyi, Wu Wanshu, Li Meng. Influence of built environment on street vitality and its spatiotemporal characteristics based on LBS positioning data. Urban Planning International, 2019, 34(1): 28-37. ]
doi: 10.22217/upi.2018.495 |
|
[20] |
Jin X B, Long Y, Sun W, et al. Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data[J]. Cities, 2017, 63: 98-109.
doi: 10.1016/j.cities.2017.01.002 |
[21] |
王波, 甄峰, 张姗琪, 等. 空气污染对城市活力的影响及其建成环境异质性: 基于大数据的分析[J]. 地理研究, 2021, 40(7): 1935-1948.
doi: 10.11821/dlyj020200685 |
[Wang Bo, Zhen Feng, Zhang Shanqi, et al. The impact of air pollution on urban vibrancy and its built environment heterogeneity: An empirical analysis based on big data. Geographical Research, 2021, 40(7): 1935-1948. ]
doi: 10.11821/dlyj020200685 |
|
[22] |
Wang B, Zhen F, Wei Z C, et al. A theoretical framework and methodology for urban activity spatial structure in e-society: Empirical evidence for Nanjing City, China[J]. Chinese Geographical Science, 2015, 25(6): 672-683.
doi: 10.1007/s11769-015-0751-4 |
[23] |
Long Y, Huang C C. Does block size matter? The impact of urban design on economic vitality for Chinese cities[J]. Environment and Planning B: Urban Analytics and City Science, 2017, 46(3): 406-422.
doi: 10.1177/2399808317715640 |
[24] | 王伟强, 马晓娇. 基于多源数据的滨水公共空间活力评价研究: 以黄浦江滨水区为例[J]. 城市规划学刊, 2020(1): 48-56. |
[Wang Weiqiang, Ma Xiaojiao. Vitality assessment of waterfront public space based on multi-source data: A case study of the Huangpu River waterfront. Urban Planning Forum, 2020(1): 48-56. ] | |
[25] |
Ye Y, Li D, Liu X J. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China[J]. Urban Geography, 2017, 39(4): 631-652.
doi: 10.1080/02723638.2017.1381536 |
[26] |
Xia C, Yeh A G O, Zhang A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities[J]. Landscape and Urban Planning, 2020, 193:103669. doi: 10.1016/j.landurbplan.2019.103669.
doi: 10.1016/j.landurbplan.2019.103669 |
[27] |
Kim Y L. Seoul's Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality[J]. Computers, Environment and Urban Systems, 2018, 72: 13-24.
doi: 10.1016/j.compenvurbsys.2018.06.004 |
[28] |
Xiao L Z, Lo S, Zhou J P, et al. Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(8): 2363-2384.
doi: 10.1177/2399808320977866 |
[29] |
Yang J W, Cao J, Zhou Y F. Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen[J]. Transportation Research Part A: Policy and Practice, 2021, 144: 74-88.
doi: 10.1016/j.tra.2020.11.014 |
[30] | 吴志强, 叶锺楠. 基于百度地图热力图的城市空间结构研究: 以上海中心城区为例[J]. 城市规划, 2016, 40(4): 33-40. |
[Wu Zhiqiang, Ye Zhongnan. Research on urban spatial structure based on Baidu heat map: A case study on the central city of Shanghai. City Planning Review, 2016, 40(4): 33-40. ] | |
[31] |
赵鹏军, 罗佳, 胡昊宇. 基于大数据的生活圈范围与服务设施空间匹配研究: 以北京为例[J]. 地理科学进展, 2021, 40(4): 541-553.
doi: 10.18306/dlkxjz.2021.04.001 |
[Zhao Pengjun, Luo Jia, Hu Hao-yu. Spatial match between residents' daily life circle and public service facilities using big data analytics: A case of Beijing. Progress in Geography, 2021, 40(4): 541-553. ]
doi: 10.18306/dlkxjz.2021.04.001 |
|
[32] | 钟炜菁, 王德. 上海市中心城区夜间活力的空间特征研究[J]. 城市规划, 2019, 43(6): 97-106, 114. |
[Zhong Weijing, Wang De. A study on the spatial characteristics of nighttime vitality in the city center of Shanghai. City Planning Review, 2019, 43(6): 97-106, 114. ] | |
[33] |
司睿, 林姚宇, 肖作鹏, 等. 基于街景数据的建成环境与街道活力时空分析: 以深圳福田区为例[J]. 地理科学, 2021, 41(9): 1536-1545.
doi: 10.13249/j.cnki.sgs.2021.09.005 |
[Si Rui, Lin Yaoyu, Xiao Zuopeng, et al. Spatio-temporal analysis of built environment and street vitality relationship based on street-level imagery: A case study of Futian District, Shenzhen. Scientia Geographica Sinica, 2021, 41(9): 1536-1545. ]
doi: 10.13249/j.cnki.sgs.2021.09.005 |
|
[34] | 韩寒. 深圳市轨道交通结构与商业活力空间关联分析[J]. 经济地理, 2021, 41(3): 86-96. |
[Han Han. Spatial correlation between rail transit structure and commercial vitality in Shenzhen. Economic Geography, 2021, 41(3): 86-96. ]
doi: 10.2307/141859 |
|
[35] |
仝照民, 安睿, 刘耀林. 建成环境对居民通勤方式选择的影响: 以武汉市城中村为例[J]. 地理科学进展, 2021, 40(12): 2048-2060.
doi: 10.18306/dlkxjz.2021.12.006 |
[Tong Zhaomin, An Rui, Liu Yaolin. Impact of the built environment on residents' commuting mode choices: A case study of urban village in Wuhan City. Progress in Geography, 2021, 40(12): 2048-2060. ]
doi: 10.18306/dlkxjz.2021.12.006 |
|
[36] |
张琳, 周素红, 关美宝, 等. 城市公交车微环境对乘客舒适度的非线性影响[J]. 地理科学进展, 2021, 40(6): 967-979.
doi: 10.18306/dlkxjz.2021.06.007 |
[Zhang Lin, Zhou Suhong, Kwan Mei-Po, et al. Nonlinear effects of bus micro-environments on passengers' comfort. Progress in Geography, 2021, 40(6): 967-979. ] | |
[37] |
Liu J, Wang B, Xiao L. Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach[J]. Journal of Transport Geography, 2021, 92:103034. doi: 10.1016/j.jtrangeo.2021.103034.
doi: 10.1016/j.jtrangeo.2021.103034 |
[38] |
Friedman J H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
doi: 10.1214/aos/1013203450 |
|