PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (1): 173-184.doi: 10.18306/dlkxjz.2023.01.014
• Reviews • Previous Articles Next Articles
HAO Lingang1,2(), YU Jingjie1,2,*(
), WANG Ping1,2, HAN Chunhui3
Received:
2022-06-15
Revised:
2022-09-17
Online:
2023-01-28
Published:
2023-03-28
Contact:
YU Jingjie
E-mail:haolg.20b@igsnrr.ac.cn;yujj@igsnrr.ac.cn
Supported by:
HAO Lingang, YU Jingjie, WANG Ping, HAN Chunhui. Analysis of the water-energy-food nexus system for sustainable development and its research framework[J].PROGRESS IN GEOGRAPHY, 2023, 42(1): 173-184.
Tab.2
Three level interaction processes within the WEF nexus system
层面 | 水资源与能源 | 水资源与粮食 | 能源与粮食 |
---|---|---|---|
物质层面 | 化石能源开采、加工与运输过程,发电过程消耗水资源;水资源提取、输送、处理与回用过程消耗能源 | 作物生长、牲畜生存、食品加工与运输耗水 | 农业机械、生产要素(化肥、农药等)消耗能源;作物可用作生物质能 |
管理层面 | 水电资源的开发利用规划与管理 | 根据水资源时空分布规律,确定耕种面积和类型 | 协调资源配置,如生物质能资源开发,有利于能源安全,但会损害粮食安全 |
技术层面 | 化石能源开采技术提高,火力发电技术升级可降低水耗 | 种植模式、灌溉技术、作物类型和品种影响粮食生产的水资源消耗 | 生物质能利用技术升级,提高单位生物资源的产能量 |
Tab.3
Impacts of climate change on the WEF nexus system
影响对象 | 正面影响 | 负面影响 |
---|---|---|
水资源 | • 部分地区降水量增加,提高水资源可供给量 | • 水温升高和溶解氧减少,降低水体自净能力,影响水质、水资源供给和水生生态系统 • 极端事件增加,洪水或干旱期间污染物的聚集,增加水污染和病原体污染风险 • 影响水资源可利用量及其分布[ |
能源 | • 北冰洋和西伯利亚及格陵兰等地区的冻土层解冻可能会增加可供开采的石油、天然气资源[ • 气候变暖降低供暖能源需要 • 冰川融化提供新的能源贸易路线 | • 洪水和风暴等极端事件会破坏化石能源开采、发电厂等能源基础设施 • 寒区多年冻土层解冻会损坏石油和天然气管道 • 气候变暖增加降温的能源需要 |
粮食 | • 高纬度地区,气候变暖增加作物处于温度适宜范围的时间,玉米、小麦和甜菜等作物的产量可能增加 • 气温回暖,作物生长期延长,霜冻时间缩短,大气CO2浓度升高,提高作物产量[ | • 种植业:低纬度地区,气温增加超过作物的温度适应范围,玉米和小麦等作物的产量降低;极端天气频发,增加农作物的气候变化脆弱性,降低农作物的产量和质量[ • 畜牧业:温度、降水、大气CO2浓度等变化会提高越冬期间病原体的成活率,对动物健康、牧草和饲料作物产生不良影响[ • 渔业和水产养殖业:深海海洋膨胀、高温和旋风等极端事件影响海洋生态系统,威胁捕捞渔业和水产养殖业 |
纽带关系 | • 水—能源:气温升高可能导致部分地区融雪径流增加,水电潜力增加 • 能源—粮食:部分地区,气候变暖会增加用来发电和其他可替代燃料生产的生物质材料数量 • 水—粮食:干旱地区的气候暖湿化、降水增加,可提高农业水资源供给量 | • 水—能源:部分地区,干旱加剧可能降低水电潜力 • 能源—粮食:部分地区,气候变暖会减少用于发电和其他可替代燃料生产的生物质材料数量 • 水—粮食:气温升高,作物和牲畜需水量增加 |
Tab.4
Impacts of different types of human activity on the WEF nexus system
人类活动类别 | 正面影响 | 负面影响 |
---|---|---|
经济发展 | 提高贫困地区居民水资源、能源、粮食的供给水平 | 可能导致资源需求增加,供需矛盾加剧。如提高农业为主地区的经济发展,可能会进一步增加农业耗水量;不发达地区的经济发展增加人均水资源、能源、粮食需求 |
人口增多 | 增加劳动力、加快能源的开发和粮食的生产,促进WEF nexus向好发展 | 增加水、能源、粮食需求量 |
科技进步、管理水平提高 | 提高水资源和能源的单位使用效率;提高作物产量及其对环境的适应性;降低三者间的互相消耗量 | 科技进步提高生活水平,可能增加资源需求,造成资源浪费;科技进步和管理水平提高会降低某一领域的资源消耗,但总的消耗量可能不降反升,如灌溉效率悖论 |
土地利用变化 | 工业用地的增加会加快工业发展、提高能源利用水平,农业用地的增加会提高粮食生产能力,水域的增加会影响气候变化及水循环系统,有利于优化WEF nexus | 城镇化加快,工农业用地增加,水资源和能源需求增加 |
水资源调度、电力调度工程 | 优化三者可利用量的空间分布关系 | 不合理调度导致资源压力转移 |
国际贸易 | 提高全球综合效益 | 导致三者在发达地区集聚,加剧欠发达地区资源压力 |
[1] |
Rasul G, Sharma B. The nexus approach to water-energy-food security: An option for adaptation to climate change[J]. Climate Policy, 2016, 16(6): 682-702.
doi: 10.1080/14693062.2015.1029865 |
[2] |
林志慧, 刘宪锋, 陈瑛, 等. 水—粮食—能源纽带关系研究进展与展望[J]. 地理学报, 2021, 76(7): 1591-1604.
doi: 10.11821/dlxb202107002 |
[Lin Zhihui, Liu Xianfeng, Chen Ying, et al. Water-food-energy nexus: Progress, challenges and prospect. Acta Geographica Sinica, 2021, 76(7): 1591-1604. ]
doi: 10.11821/dlxb202107002 |
|
[3] | 张宗勇, 刘俊国, 王凯, 等. 水—粮食—能源关联系统述评: 文献计量及解析[J]. 科学通报, 2020, 65(16): 1569-1581. |
[Zhang Zongyong, Liu Junguo, Wang Kai, et al. A review and discussion on the water-food-energy nexus: Bibliometric analysis. Chinese Science Bulletin, 2020, 65(16): 1569-1581. ] | |
[4] |
Wang K, Liu J G, Xia J, et al. Understanding the impacts of climate change and socio-economic development through food-energy-water nexus: A case study of Mekong River Delta[J]. Resources, Conservation and Recycling, 2021, 167: 105390. doi: 10.1016/j.resconrec.2020.105390.
doi: 10.1016/j.resconrec.2020.105390 |
[5] |
Fuhrman J, McJeon H, Patel P, et al. Food-energy-water implications of negative emissions technologies in a +1.5 ℃ future[J]. Nature Climate Change, 2020, 10(10): 920-927.
doi: 10.1038/s41558-020-0876-z |
[6] |
Barron-Gafford G A, Pavao-Zuckerman M A, Minor R L, et al. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands[J]. Nature Sustainability, 2019, 2(9): 848-855.
doi: 10.1038/s41893-019-0364-5 |
[7] |
Abulibdeh A, Zaidan E. Managing the water-energy-food nexus on an integrated geographical scale[J]. Environmental Development, 2020, 33: 100498. doi: 10.1016/j.envdev.2020.100498.
doi: 10.1016/j.envdev.2020.100498 |
[8] |
Zhang C, Chen X X, Li Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639.
doi: 10.1016/j.jclepro.2018.05.194 |
[9] | Hussien W A, Memon F A, Savic D A. An integrated model to evaluate water-energy-food nexus at a household scale[J]. Environmental Modelling & Software, 2017, 93: 366-380. |
[10] | Fabiani S, Vanino S, Napoli R, et al. Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy[J]. Environmental Science & Policy, 2020, 104: 1-12. |
[11] |
Smajgl A, Ward J, Pluschke L. The water-food-energy nexus: Realising a new paradigm[J]. Journal of Hydrology, 2016, 533: 533-540.
doi: 10.1016/j.jhydrol.2015.12.033 |
[12] |
Do P, Tian F Q, Zhu T J, et al. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River Basin[J]. Science of the Total Environment, 2020, 728: 137996. doi: 10.1016/j.scitotenv.2020.137996.
doi: 10.1016/j.scitotenv.2020.137996 |
[13] | 孙才志, 魏亚琼, 赵良仕. 干旱区水—能源—粮食纽带系统协同演化: 以中国西北地区为例[J]. 自然资源学报, 2022, 37(2): 320-333. |
[Sun Caizhi, Wei Yaqiong, Zhao Liangshi. Co-evolution of water-energy-food nexus in arid areas: Take Northwest China as an example. Journal of Natural Resources, 2022, 37(2): 320-333. ]
doi: 10.31497/zrzyxb.20220204 |
|
[14] |
Deng C Y, Wang H R, Gong S X, et al. Effects of urbanization on food-energy-water systems in mega-urban regions: A case study of the Bohai MUR, China[J]. Environmental Research Letters, 2020, 15(4): 044014. doi: 10.1088/1748-9326/ab6fbb.
doi: 10.1088/1748-9326/ab6fbb |
[15] |
Barik B, Ghosh S, Sahana A S, et al. Water-food-energy nexus with changing agricultural scenarios in India during recent decades[J]. Hydrology and Earth System Sciences, 2017, 21(6): 3041-3060.
doi: 10.5194/hess-21-3041-2017 |
[16] |
Putra M P I F, Pradhan P, Kropp J P. A systematic analysis of water-energy-food security nexus: A South Asian case study[J]. Science of the Total Environment, 2020, 728: 138451. doi: 10.1016/j.scitotenv.2020.138451.
doi: 10.1016/j.scitotenv.2020.138451 |
[17] |
Xu Z C, Li Y J, Chau S N, et al. Impacts of international trade on global sustainable development[J]. Nature Sustainability, 2020, 3(11): 964-971.
doi: 10.1038/s41893-020-0572-z |
[18] | 王红瑞, 赵伟静, 邓彩云, 等. 水—能源—粮食纽带关系若干问题解析[J]. 自然资源学报, 2022, 37(2): 307-319. |
[Wang Hongrui, Zhao Weijing, Deng Caiyun, et al. Analysis on issues of water-energy-food nexus. Journal of Natural Resources, 2022, 37(2): 307-319. ]
doi: 10.31497/zrzyxb.20220203 |
|
[19] |
王奕佳, 刘焱序, 宋爽, 等. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
doi: 10.11867/j.issn.1001-8166.2021.073 |
[Wang Yijia, Liu Yanxu, Song Shuang, et al. Research progress of the water-food-energy-ecosystem nexus. Advances in Earth Science, 2021, 36(7): 684-693. ]
doi: 10.11867/j.issn.1001-8166.2021.073 |
|
[20] |
Li P C, Ma H W. Evaluating the environmental impacts of the water-energy-food nexus with a life-cycle approach[J]. Resources, Conservation and Recycling, 2020, 157: 104789. doi: 10.1016/j.resconrec.2020.104789.
doi: 10.1016/j.resconrec.2020.104789 |
[21] |
Hao L G, Wang P, Yu J J, et al. An integrative analytical framework of water-energy-food security for sustainable development at the country scale: A case study of five Central Asian countries[J]. Journal of Hydrology, 2022, 607: 127530. doi: 10.1016/j.jhydrol.2022.127530.
doi: 10.1016/j.jhydrol.2022.127530 |
[22] |
Taniguchi M, Masuhara N, Burnett K. Water, energy, and food security in the Asia Pacific region[J]. Journal of Hydrology: Regional Studies, 2017, 11: 9-19.
doi: 10.1016/j.ejrh.2015.11.005 |
[23] | Gal L, Anne K, Eshita G. 能源安全和气候变化之间的薄弱联系[EB/OL].关媛, 译. [2022-06-15]. http://www.iags.org/ES_and_Climate.pdf. |
[Gal L, Anne K, Eshita G. The weak link between energy security and climate change. Translated by Guan Yuan. [2022-06-15]. http://www.iags.org/ES_and_Climate.pdf. | |
[24] | 刘俊国, 陈鹤, 田展. IPCC AR6报告解读: 气候变化与水安全[J]. 气候变化研究进展, 2022, 18(4): 405-413. |
[Liu Junguo, Chen He, Tian Zhan. Interpretation of IPCC AR6: Climate change and water security. Climate Change Research, 2022, 18(4): 405-413. ] | |
[25] |
肖国举, 张强, 王静. 全球气候变化对农业生态系统的影响研究进展[J]. 应用生态学报, 2007, 18(8): 1877-1885.
pmid: 17974260 |
[Xiao Guoju, Zhang Qiang, Wang Jing. Impact of global climate change on agro-ecosystem: A review. Chinese Journal of Applied Ecology, 2007, 18(8): 1877-1885. ]
pmid: 17974260 |
|
[26] | FAO. Climate change and food security: Risks and responses[R]. Rome, Italy: FAO, 2015. |
[27] | 张超, 刘蓓蓓, 李楠, 等. 面向可持续发展的资源关联研究: 现状与展望[J]. 科学通报, 2021, 66(26): 3426-3440. |
[Zhang Chao, Liu Beibei, Li Nan, et al. Resource nexus for sustainable development: Status quo and prospect. Chinese Science Bulletin, 2021, 66(26): 3426-3440. ] | |
[28] |
Crippa M, Solazzo E, Guizzardi D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198-209.
doi: 10.1038/s43016-021-00225-9 |
[29] |
邓铭江, 龙爱华, 李江, 等. 西北内陆河流域“自然—社会—贸易”三元水循环模式解析[J]. 地理学报, 2020, 75(7): 1333-1345.
doi: 10.11821/dlxb202007001 |
[Deng Mingjiang, Long Aihua, Li Jiang, et al. Theoretical analysis of "natural-social-trading" ternary water cycle mode in the inland river basin of Northwest China. Acta Geographica Sinica, 2020, 75(7): 1333-1345. ]
doi: 10.11821/dlxb202007001 |
|
[30] | 左其亭, 吴青松, 金君良, 等. 区域水平衡基本原理及理论体系[J]. 水科学进展, 2022, 33(2): 165-173. |
[Zuo Qi-ting, Wu Qingsong, Jin Junliang, et al. The basic principle and theoretical system of regional water balance. Advances in Water Science, 2022, 33(2): 165-173. ] | |
[31] | 刘昌明, 刘璇, 于静洁, 等. 生态水文学兴起: 学科理论与实践问题的评述[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 412-423. |
[Liu Changming, Liu Xuan, Yu Jingjie, et al. Ecohydrology on the upsurge: History and prospect of its theory and application. Journal of Beijing Normal University ( Natural Science), 2022, 58(3): 412-423. ] | |
[32] | 王雨, 王会肖, 杨雅雪, 等. 水—能源—粮食纽带关系定量研究方法综述[J]. 南水北调与水利科技(中英文), 2020, 18(6): 42-63. |
[Wang Yu, Wang Huixiao, Yang Yaxue, et al. Review of quantitative research methods for water-energy-food nexus. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 42-63. ] | |
[33] |
郝帅, 孙才志, 宋强敏. 中国能源—粮食生产对水资源竞争的关系: 基于水足迹的视角[J]. 地理研究, 2021, 40(6): 1565-1581.
doi: 10.11821/dlyj020200525 |
[Hao Shuai, Sun Caizhi, Song Qiangmin. Study on the competitive relationship between energy and food production for water resources in China: From a perspective of water footprint. Geographical Research, 2021, 40(6): 1565-1581. ]
doi: 10.11821/dlyj020200525 |
|
[34] |
Naderi M M, Mirchi A, Bavani A R M, et al. System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran[J]. Journal of Environmental Management, 2021, 280: 111843. doi: 10.1016/j.jenvman.2020.111843.
doi: 10.1016/j.jenvman.2020.111843 |
[35] | 李海涛, 李明阳. 基于能值的哈萨克斯坦可持续发展评价[J]. 自然资源学报, 2020, 35(9): 2218-2228. |
[Li Haitao, Li Mingyang. Evaluation of Kazakhstan's sustainability based on energy theory. Journal of Natural Resources, 2020, 35(9): 2218-2228. ]
doi: 10.31497/zrzyxb.20200914 |
|
[36] | 项潇智. 基于CGE模型的中国水—能源—食物—土地关联与优化研究[D]. 北京: 中国科学院大学, 2020. |
[Xiang Xiaozhi. Research on correlation and optimization of water-energy-food-land in China based on CGE model. Beijing, China: The University of Chinese Academy of Sciences, 2020. ] | |
[37] |
Pastor A V, Palazzo A, Havlik P, et al. The global nexus of food-trade-water sustaining environmental flows by 2050[J]. Nature Sustainability, 2019, 2(6): 499-507.
doi: 10.1038/s41893-019-0287-1 |
[38] |
Wild T B, Khan Z, Zhao M Q, et al. The implications of global change for the co-evolution of Argentina's integrated energy-water-land systems[J]. Earth's Future, 2021, 9(8): e2020EF001970. doi: 10.1029/2020EF001970.
doi: 10.1029/2020EF001970 |
[39] |
Shi H Y, Luo G P, Zheng H W, et al. Coupling the water-energy-food-ecology nexus into a bayesian network for water resources analysis and management in the Syr Darya River basin[J]. Journal of Hydrology, 2020, 581: 124387. doi: 10.1016/j.jhydrol.2019.124387.
doi: 10.1016/j.jhydrol.2019.124387 |
[40] |
Daher B T, Mohtar R H. Water-energy-food (WEF) Nexus tool 2.0: Guiding integrative resource planning and decision-making[J]. Water International, 2015, 40(5/6): 748-771.
doi: 10.1080/02508060.2015.1074148 |
[41] |
Salmoral G, Yan X Y. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar Catchment, UK[J]. Resources, Conservation and Recycling, 2018, 133: 320-330.
doi: 10.1016/j.resconrec.2018.01.018 |
[1] | SHEN Yue, WANG De. Interdisciplinary application of theories and methods of behavioral geography [J]. PROGRESS IN GEOGRAPHY, 2022, 41(1): 40-52. |
[2] | HE Shi, YIN Jie. Cognitive map research in the field of geography: A review and prospect [J]. PROGRESS IN GEOGRAPHY, 2022, 41(1): 73-85. |
[3] | QIU Jianjian, LIU Yihua, YUAN Li, CHEN Chengjing, HUANG Qingyao. Research progress and prospect of the interrelationship between ecosystem services and human well-being in the context of coupled human and natural system [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 1060-1072. |
[4] | LI Yuheng, HUANG Huiqian, SONG Chuanyao. Rural economic resilience in poor areas and its enlightenment: Case study of Yangyuan County, Hebei Province [J]. PROGRESS IN GEOGRAPHY, 2021, 40(11): 1839-1846. |
[5] | CAO Kexin, DENG Yu. Spatio-temporal evolution path and driving mechanisms of sustainable urban renewal: Progress and perspective [J]. PROGRESS IN GEOGRAPHY, 2021, 40(11): 1942-1955. |
[6] | CHEN Ruishan, ZHAO Zhiqiang, XU Di, CHEN Yi. Progress of research on sustainable development index for cities and urban agglomerations [J]. PROGRESS IN GEOGRAPHY, 2021, 40(1): 61-72. |
[7] | WU Jiansheng, LI Kaiyang, ZHAO Yuhao. The use of land natural capital in the Guanzhong region based on a revised three-dimensional ecological footprint model [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1345-1355. |
[8] | LI Yuheng, SONG Chuanyao, YAN Jiayu, HUANG Huiqian. Change of rural regional system in deep poverty areas: A case study of Yangyuan County, Hebei Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 951-959. |
[9] | ZHAO Ruidong, FANG Chuanglin, LIU Haimeng. Progress and prospect of urban resilience research [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1717-1731. |
[10] | WU Danxian, GAO Xiaolu. A geographic review of Western research on long-term care for the elderly [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 132-142. |
[11] | Cheng WANG, Haoying LI, Yanzhou HE, Xiaosu MA, Mingming ZHOU. Sustainable development ability and its spatiotemporal differentiations of rural human settlements in Chongqing Municipality from 1997 to 2015 [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 556-566. |
[12] | Junze ZHANG, Shuai WANG, Wenwu ZHAO, Yanxu LIU, Bojie FU. Review on the conceptual framework of planetary boundaries and the development of its research [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 465-476. |
[13] | SHEN Jing,CAO Yuanyuan. Concept and research framework of greening global value chain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(10): 1462-1472. |
[14] | Yuheng LI, Jiayu YAN, Wenhao WU, Yansui LIU. The process of rural transformation in the world and prospects of sustainable development [J]. PROGRESS IN GEOGRAPHY, 2018, 37(5): 627-635. |
[15] | Shushi PENG, Shilong PIAO, Jiashuo YU, Yongwen LIU, Tao WANG, Gaofeng ZHU, Jinwei DONG, Chiyuan MIAO. A review of geographical system models [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 109-120. |
|