PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1590-1599.doi: 10.18306/dlkxjz.2021.09.013
• Industrial Applications of UAV • Previous Articles Next Articles
XUE Yu'ang1,2(), JING Zhefan1,*(
), KANG Shichang1,2
Received:
2020-09-24
Revised:
2021-02-04
Online:
2021-09-28
Published:
2021-09-28
Contact:
JING Zhefan
E-mail:xueyuang@lzb.ac.cn;jingzhefan@nieer.ac.cn
Supported by:
XUE Yu'ang, JING Zhefan, KANG Shichang. Application of unmanned aerial vehicle in glacier change monitoring: Taking the Xiao Dongkemadi Glacier in the Tanggula Mountains as an example[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1590-1599.
Tab.2
Comparison of measured elevation change of stakes and DEM extracted during the ablation season of the Xiao Dongkemadi Glacier (m)
对比项 | 花杆号 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
花杆实测变化 | 1.48 | 1.39 | 1.34 | 1.38 | 1.29 | 1.55 | 1.52 | 1.12 | 1.07 | 1.28 |
DEM提取变化 | 1.49 | 1.53 | 1.76 | 1.41 | 1.77 | 1.76 | 1.56 | 1.89 | 1.68 | 2.04 |
差值绝对值 | 0.01 | 0.14 | 0.42 | 0.03 | 0.48 | 0.21 | 0.04 | 0.77 | 0.61 | 0.76 |
[1] | 施雅风. 中国冰川与环境: 现在、过去和未来[M]. 北京: 科学出版社, 2000: 101-103. |
[ Shi Yafeng. Glaciers and their environments in China: The present, past and future. Beijing, China: Science Press, 2000: 101-103. ] | |
[2] |
段建平, 王丽丽, 任贾文, 等. 近百年来中国冰川变化及其对气候变化的敏感性研究进展[J]. 地理科学进展, 2009, 28(2):231-237.
doi: 10.11820/dlkxjz.2009.02.010 |
[ Duan Jianping, Wang Lili, Ren Jia-wen, et al. Progress in glacier variations in China and its sensitivity to climatic change during the past century. Progress in Geography, 2009, 28(2):231-237. ] | |
[3] |
Immerzeel W W, Kraaijenbrink P D A, Shea J M. et al. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles[J]. Remote Sensing of Environment, 2014, 150:93-103.
doi: 10.1016/j.rse.2014.04.025 |
[4] | 吴珊珊, 姚治君, 姜丽光, 等. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2):237-246. |
[ Wu Shanshan, Yao Zhijun, Jiang Liguang, et al. Method review of modern glacier volume change. Advances in Earth Science, 2015, 30(2):237-246. ] | |
[5] | 叶庆华, 程维明, 赵永利, 等. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报, 2016, 18(7):920-930. |
[ Ye Qinghua, Cheng Weiming, Zhao Yongli, et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies. Journal of Geo-information Science, 2016, 18(7):920-930. ] | |
[6] |
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1):3-16.
doi: 10.11821/dlxb201501001 |
[ Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 2015, 70(1):3-16. ] | |
[7] | 曹梅盛, 李新, 陈贤章. 冰冻圈遥感 [M]. 北京: 科学出版社, 2006: 133-138. |
[ Cao Meisheng, Li Xin, Chen Xianzhang. Remote sensing of cryosphere. Beijing, China: Science Press, 2006: 133-138. ] | |
[8] | Vallet J, Panissod F, Strecha C, et al. Photogrammetric performance of an ultra light weight swinglet "UAV"[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 1/C22:253-258. |
[9] |
Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92:79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 |
[10] | 廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052. |
[ Liao Xiaohan, Xiao Qing, Zhang Hao. UAV remote sensing: Popularization and expand application development trend. Journal of Remote Sensing, 2019, 23(6):1046-1052. ] | |
[11] |
Giordan D, Adams M S, Aicardi I, et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications[J]. Bulletin of Engineering Geology and the Environment, 2020, 79:3437-3481.
doi: 10.1007/s10064-020-01766-2 |
[12] |
Zmarz A, Rodzewicz M, Dąbski M, et al. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem[J]. Remote Sensing of Environment, 2018, 217:375-388.
doi: 10.1016/j.rse.2018.08.031 |
[13] |
Carrera-Hernández J J, Levresse G, Lacan P. Is UAV-SfM surveying ready to replace traditional surveying techniques?[J]. International Journal of Remote Sensing, 2020, 41(12):4820-4837.
doi: 10.1080/01431161.2020.1727049 |
[14] |
Whitehead K, Moorman B J, Hugenholtz C H. Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement[J]. The Cryosphere, 2013, 7(6):1879-1884.
doi: 10.5194/tc-7-1879-2013 |
[15] | Fugazza D, Senese A, Azzoni R, et al. High-resolution mapping of glacier surface features: The UAV survey of the Forni Glacier (Stelvio National Park, Italy)[J]. Geografia Fisica e Dinamica Quaternaria, 2015, 38:25-33. |
[16] |
Kraaijenbrink P D A, Shea J M, Pellicciotti F, et al. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier[J]. Remote Sensing of Environment, 2016, 186:581-595.
doi: 10.1016/j.rse.2016.09.013 |
[17] |
Kraaijenbrink P, Meijer S W, Shea J M, et al. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery[J]. Annals of Glaciology, 2016, 57(71):103-113.
doi: 10.3189/2016AoG71A072 |
[18] |
Wigmore O, Mark B. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru[J]. The Cryosphere, 2017, 11(6):2463-2480.
doi: 10.5194/tc-11-2463-2017 |
[19] |
Azzoni R S, Fugazza D, Zerboni A, et al. Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris: A study in the central Alps (Stelvio Park, Italy)[J]. Progress in Physical Geography: Earth and Environment, 2018, 42(1):3-23.
doi: 10.1177/0309133317749434 |
[20] |
Rossini M, Di Mauro B, Garzonio R, et al. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry[J]. Geomorphology, 2018, 304:159-172.
doi: 10.1016/j.geomorph.2017.12.039 |
[21] |
Benoit L, Gourdon A, Vallat R, et al. A high-resolution image time series of the Gorner Glacier—Swiss Alps—derived from repeated unmanned aerial vehicle surveys[J]. Earth System Science Data, 2019, 11(2):579-588.
doi: 10.5194/essd-11-579-2019 |
[22] |
Jouvet G, Van Dongen E, Lüthi M P, et al. In situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled unmanned aerial vehicle (UAV)[J]. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9(1):1-10.
doi: 10.5194/gi-9-1-2020 |
[23] |
Brun F, Buri P, Miles E S, et al. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry[J]. Journal of Glaciology, 2016, 62:684-695.
doi: 10.1017/jog.2016.54 |
[24] |
Buri P, Pellicciotti F, Steiner J F, et al. A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers[J]. Annals of Glaciology, 2016, 57(71):199-211.
doi: 10.3189/2016AoG71A059 |
[25] |
Kraaijenbrink P D A, Shea J M, Litt M, et al. Mapping surface temperatures on a debris-covered glacier with an unmanned aerial vehicle[J]. Frontiers in Earth Science, 2018, 6:64. doi: 10.3389/feart.2018.00064.
doi: 10.3389/feart.2018.00064 |
[26] |
Che Y J, Wang S J, Yi S H, et al. Summer mass balance and surface velocity derived by unmanned aerial vehicle on debris-covered region of Baishui River Glacier No. 1, Yulong Snow Mountain[J]. Remote Sensing, 2020, 12(20):3280. doi: 10.3390/rs12203280.
doi: 10.3390/rs12203280 |
[27] |
Yang W, Zhao C X, Westoby M, et al. Seasonal dynamics of a temperate Tibetan Glacier revealed by high-resolution UAV photogrammetry and in situ measurements[J]. Remote Sensing, 2020, 12(15):2389. doi: 10.3390/rs12152389.
doi: 10.3390/rs12152389 |
[28] | 杨建平, 丁永建, 叶柏生, 等. 长江源区小冬克玛底冰川区积雪消融特征及对气候的响应[J]. 冰川冻土, 2007, 29(2):258-264. |
[ Yang Jianping, Ding Yongjian, Ye Baisheng, et al. Snowmelt process on the Xiao Dongkemadi Glacier in the source region of the Yangtze River and its responses to meteorological factors. Journal of Glaciology and Geocryology, 2007, 29(2):258-264. ] | |
[29] | 张健, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2):263-271. |
[ Zhang Jian, He Xiaobo, Ye Baisheng, et al. Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors. Journal of Glaciology and Geocryology, 2013, 35(2):263-271. ] | |
[30] |
Liang L Q, Cuo L, Liu Q. Mass balance variation and associative climate drivers for the Dongkemadi Glacier in the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20):10814-10825.
doi: 10.1029/2019JD030615 |
[31] |
Pu J C, Yao T D, Yang M X, et al. Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau[J]. Hydrological Processes, 2008, 22(16):2953-2958.
doi: 10.1002/hyp.v22:16 |
[32] | DJI. Phantom 4 Pro Pro/Pro Plus用户手册V1.4[M/OL]. 2017-10-01 [2020-09-04]. https://www.dji.com/cn/downloads/products/phantom-4-pro. |
[DJI. User handbook of Phantom 4 Pro Pro/Pro Plus V1.4. 2017-10-01 [2020-09-04]. https://www.dji.com/cn/downloads/products/phantom-4-pro. ] | |
[33] | 刘宇硕, 秦翔, 郭万钦, 等. 控制点布设对冰川区无人机摄影测量精度的影响[J]. 遥感学报, 2020, 24(2):161-172. |
[ Liu Yushuo, Qin Xiang, Guo Wanqin, et al. Influence of the use of photogrammetric measurement precision on low-altitude micro-UAVs in the glacier region. Journal of Remote Sensing, 2020, 24(2):161-172. ] | |
[34] | 谯程骏. 唐古拉山冬克玛底地区冰川变化遥感监测[J]. 安徽农业科学, 2010, 38(14):7703-7705. |
[ Qiao Chengjun. Remote sensing monitoring of glacier changes in Dongkemadi region of Tanggula Mountain. Journal of Anhui Agricultural Sciences, 2010, 38(14):7703-7705. ] | |
[35] |
Turner D, Lucieer A, Watson C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds[J]. Remote Sensing, 2012, 4(5):1392-1410.
doi: 10.3390/rs4051392 |
[36] |
廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5):709-715.
doi: 10.18306/dlkxjz.2020.05.001 |
[ Liao Xiaohan. Advance of geographic sciences and new technology applications. Progress in Geography, 2020, 39(5):709-715. ] |
[1] | FAN Bangkui, LI Yun, ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1441-1450. |
[2] | TAN Junming, LIAO Xiaohan. Development of unmanned aerial vehicle cloud management system with the application of geographic information technology [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1451-1466. |
[3] | WANG Yong, YANG Yusen, WANG Shibo, YANG Yu, ZHANG Rui. A review on the architecture construction of remote sensing data from unmanned aerial vehicle networking [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1467-1479. |
[4] | LI Guo, JIANG Kaiwen, WANG Yong, SUN Shanlin, YANG Ming, LI Yun, ZHAO Haimeng, YAN Lei. Redundancy and fault tolerance of unmanned aerial vehicle remote sensing network [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1480-1487. |
[5] | HE Hongbo, XU Chenchen, YE Huping. Environmental risk assessment of obstacles in low-altitude flight of unmanned aerial vehicle: Taking the Beijing-Tianjin New Town as an example [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1503-1515. |
[6] | JIAO Qingyu, CHEN Xinfeng, ZHENG Zhigang, BAI Yiqin, LIU Yansi, ZHANG Zhengjuan, SUN Longni. Dynamic path planning of unmanned aerial vehicle based on crowd density prediction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1516-1527. |
[7] | ZHONG Ruomei, WEN Xiaohang, XU Chenchen. Simulation and analysis of wind speed and direction of unmanned aerial vehicle route in the Beijing-Tianjin-Hebei region based on high resolution model [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1528-1539. |
[8] | YANG Rui, LIU Yang. Evaluation method based on fuzzy assessment model for unmanned aerial vehicle detection system in civil airports [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1540-1549. |
[9] | GUO Qinghua, HU Tianyu, LIU Jin, JIN Shichao, XIAO Qing, YANG Guijun, GAO Xianlian, XU Qiang, XIE Pinhua, PENG Chigang, YAN Li. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1550-1569. |
[10] | DAI Wen, TANG Guo'an, HU Guanghui, YANG Xin, XIONG Liyang, WANG Lei. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1570-1580. |
[11] | WU Kunpeng, LIU Shiyin, ZHU Yu, XIE Fuming, GAO Yongpeng. High-resolution monitoring of glacier dynamics based on unmanned aerial vehicle survey in the Meili Snow Mountain [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1581-1589. |
[12] | CHEN Xiliang, LI Gang, XU Feng, YU Yue, ZHANG Qianxi. City image perception of Xi’an based on unmanned aerial vehicle photography photos [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1600-1612. |
[13] | TIAN Shengrong, ZHU Wenbin, ZHOU Shijian. Near surface air temperature estimation based on MODIS atmospheric profile product over Qinghai Province [J]. PROGRESS IN GEOGRAPHY, 2021, 40(8): 1386-1396. |
[14] | HUANG Huabing, WANG Xianwei, LIU Lin. A review on urban pluvial floods: Characteristics, mechanisms, data, and research methods [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 1048-1059. |
[15] | LIU Zexing, CHEN Yangbo. Spatiotemporal change of urban river in urbanization process based on remote sensing and GIS: A case study of the Buji River in Shenzhen City [J]. PROGRESS IN GEOGRAPHY, 2021, 40(4): 693-702. |
|