PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (2): 343-356.doi: 10.18306/dlkxjz.2021.02.014
• Reviews • Previous Articles
DENG Guofu1,2, LI Mingqi1,2,*()
Received:
2020-04-20
Revised:
2020-08-21
Online:
2021-02-28
Published:
2021-04-28
Contact:
LI Mingqi
E-mail:limq@igsnrr.ac.cn
Supported by:
DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction[J].PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356.
Tab.1
International studies on responses of tree-ring density to climate change"
研究区 | 树种 | 拉丁名 | 指标 | 海拔/m | 气候变量 | 相关系数/时段 | 文献来源 |
---|---|---|---|---|---|---|---|
Pyrenees | 欧洲赤松 山赤松 欧洲冷杉 | Pinus sylvestris Pinus uncinata Abies alba | MXD | 2010 | T(5—9月) | 0.80/1952—2002年 | [ |
Mount Norikura | 富士山冷杉 | Abies veitchii | MXD | 1600 | T(7、9月) | 0.30/1979—2005年 | [ |
Mount Norikura | 富士山冷杉 | Abies veitchii | MXD | 1900 | T(7—9月) | 0.35/1979—2005年 | [ |
Mount Norikura | 大白叶冷杉 | Abies mariesii | MXD | 1900 | T(7—9月) | 0.34/1979—2005年 | [ |
Mount Norikura | 大白叶冷杉 | Abies mariesii | MXD | 2400 | T(7—9月) | 0.44/1979—2005年 | [ |
Rhaetian Alps, Italy | 瑞士五针松 | Pinus cembra | MXD | 2075~2350 | T(5—9月) | 0.60/1901—2015年 | [ |
Eastern Carpathians | 欧洲赤松 | Pinus sylvestris | MXD | 750~1200 | Tmax(7月30日—9月24日) | 0.63/1961—2013年 | [ |
Tatras | 欧洲云杉 | Picea abies | MXD | 1480 | T(4—9月) | 0.62/1901—2004年 | [ |
Dolina Mengusovska | 欧洲落叶松 | Larix decidua | MXD | 1450 | T(5—6月) | 0.68/1951—2012年 | [ |
Village Vernar | 欧洲落叶松 | Larix decidua | MXD | 850 | P(7月) | 0.43/1951—2012年 | [ |
Altai | 西伯利亚落叶松 | Larix sibirica | MXD | 2380 | T(6—7月) | 0.57/1963—2000年 | [ |
Yakutia | 卡氏落叶松 | Larix cajanderi | MXD | 22 | T(6—7月) | 0.55/1950—2000年 | [ |
Alps | 欧洲落叶松 | Larix decidua | MXD | >1500 | T(6—9月) | 0.73/1911—2003年 | [ |
Franklin Mountains | 白云杉 | Picea glauca | MXD | 653 | T(5—8月) | 0.45/1944—1977年 | [ |
Hornby Cabin | 白云杉 | Picea glauca | MXD | 143 | T(5—8月) | 0.58/1944—1977年 | [ |
Cri Lake | 白云杉 | Picea glauca | MXD | 108 | T(5—9月) | 0.50/1944—1977年 | [ |
Coppermine | 白云杉 | Picea glauca | MXD | 200 | T(5—8月) | 0.48/1944—1977年 | [ |
North-eastern Finland | 欧洲赤松 | Pinus sylvestris | MXD | 200 | T(4—9月) | 0.68/1876—2013年 | [ |
Laanila | 欧洲赤松 | Pinus sylvestris | MXD | 220 | T(6—8月) | 0.61/1958—2002年 | [ |
Suntar Khayata | 卡氏落叶松 | Larix cajanderi | MXD | 900 | Tmin(6—8月) | 0.67/1929—2000年 | [ |
Iberian Peninsula | 西班牙刺柏 | Juniperus thurifera | MID | 530~1375 | P(4—6月) | -0.67/1951—2000年 | [ |
Southern Urals | 欧洲赤松 | Pinus sylvestris | MID | 740 | P(5月) | -0.58/1950—2002年 | [ |
Khangai | 西伯利亚落叶松 | Larix sibirica | MID | 1920 | P(6月) | -0.57/1950—2002年 | [ |
Sierra de Gúdar | 欧洲黑松 | Pinus nigra | MID | 1090 | P(5月) | -0.65/1950—2002年 | [ |
Tab.2
Studies on responses of tree-ring density to climate change in China"
样点 | 树种 | 海拔/m | 指标 | 响应变量 | 相关系数/时段 | 文献来源 |
---|---|---|---|---|---|---|
吉普克 | 雪岭云杉 | 2555 | MXD | T(8月) | 0.35/1959—2004年 | [ |
阿乌里亚乔克山 | 雪岭云杉 | 2690 | MXD | T(4—8月) | 0.42/1961—2005年 | [ |
小白代沟 | 雪岭云杉 | 2682 | MXD | T(6—8月) | 0.33/1956—2006年 | [ |
长白山 | 长白落叶松 | 1848 | MXD | Tmax(6—8月) | 0.38/1958—2008年 | [ |
长白山 | 长白落叶松 | 1585 | MXD | Tmax(4—9月) | 0.44/1958—2008年 | [ |
长白山 | 长白落叶松 | 983 | MXD | Tmin(8月) | -0.26/1958—2008年 | [ |
漠河 | 兴安落叶松 | 650 | MXD | Tmax(7月) | 0.45/1922—1998年 | [ |
漠河 | 兴安落叶松 | 650 | MID | Tmin(3月) | -0.323/1922—1998年 | [ |
漠河 | 樟子松 | 650 | MXD | Tmax(8月) | 0.49/1922—1998年 | [ |
漠河 | 樟子松 | 650 | MID | P(4月) | 0.343/1922—1998年 | [ |
崆峒山 | 油松 | 1950 | MID | P(6—8月) | -0.4/1951—2006年 | [ |
崆峒山 | 油松 | 1950 | EWD | P(6—8月) | -0.36/1951—2006年 | [ |
崆峒山 | 油松 | 1950 | MXD | T(6—8月) | -0.26/1951—2006年 | [ |
崆峒山 | 油松 | 1950 | LWD | T(6—9月) | -0.28/1951—2006年 | [ |
艾肯达坂 | 天山云杉 | 2455 | MXD | T(7—8月) | 0.30/1968—2005年 | [ |
巩乃斯林场北 | 天山云杉 | 1982 | EWD | P(6—7月) | -0.50/1968—2005年 | [ |
艾肯达坂 | 雪岭云杉 | 2450 | MXD | Tmax(5—8月) | 0.304/1958—2008年 | [ |
小五台山 | 青杨(雌) | 1600 | MXD | Tmax(8月) | 0.348/1982—2011年 | [ |
小五台山 | 青杨(雄) | 1600 | MXD | Tmax(4月) | -0.429/1982—2011年 | [ |
祁连山中段 | 青海云杉 | 3140~3390 | EWD | P(5月) | -0.623/1956—2009年 | [ |
[1] |
Cook E R, Seager R, Kushnir Y , et al. Old World megadroughts and pluvials during the Common Era[J]. Science Advances, 2015,1(10):e1500561. doi: 10.1126/sciadv.1500561.
doi: 10.1126/sciadv.1500561 pmid: 26601136 |
[2] |
Büntgen U, Myglan V S, Ljungqvist F C , et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD[J]. Nature Geoscience, 2016,9(3):231-236.
doi: 10.1038/ngeo2652 |
[3] | Fritts H C. Tree rings and climate [M]. London, UK: Academic Press, 1976: 434-505. |
[4] |
张芳芳, 郑永宏, 潘国艳 , 等. 神农架地区树轮δ 18O序列的气候指示意义 [J]. 地理科学进展, 2018,37(7):946-953.
doi: 10.18306/dlkxjz.2018.07.008 |
[ Zhang Fangfang, Zheng Yonghong, Pan Guoyan , et al. Climatic significance of tree-ring δ 18O in Shennongjia Mountain . Progress in Geography, 2018,37(7):946-953. ] | |
[5] | 郑永宏, 张永, 邵雪梅 , 等. 大别山地区黄山松和油松树轮宽度的气候意义[J]. 地理科学进展, 2012,31(1):72-77. |
[ Zheng Yonghong, Zhang Yong, Shao Xuemei , et al. Climate significance of tree ring width of Huangshan Pine and Chinese Pine in the Dabie Mountains. Progress in Geography, 2012,31(1):72-77. ] | |
[6] |
孙宇, 王丽丽 . 全球落叶松属树轮气候学研究进展[J]. 地理科学进展, 2013,32(12):1760-1770.
doi: 10.11820/dlkxjz.2013.12.005 |
[ Sun Yu, Wang Lili . Global research progresses in dendroclimatology of Larix miller. Progress in Geography, 2013,32(12):1760-1770. ] | |
[7] |
王亚军, 李明启 . 中国利用树轮资料重建干湿变化研究进展[J]. 地理科学进展, 2016,35(11):1397-1410.
doi: 10.18306/dlkxjz.2016.11.010 |
[ Wang Yajun, Li Mingqi . Research progress of dry-wet climate reconstruction by tree-ring in China. Progress in Geography, 2016,35(11):1397-1410. ] | |
[8] |
Liang E Y, Lu X M, Ren P , et al. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: A useful climatic proxy[J]. Annals of Botany, 2012,109(4):721-728.
doi: 10.1093/aob/mcr315 |
[9] |
Yin H, Liu H B, Linderholm H W , et al. Tree ring density-based warm-season temperature reconstruction since A.D. 1610 in the eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,426:112-120.
doi: 10.1016/j.palaeo.2015.03.003 |
[10] |
Jones P D, Melvin T M, Harpham C , et al. Cool North European summers and possible links to explosive volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2013,118(12):6259-6265.
doi: 10.1002/jgrd.50513 |
[11] |
Fritts H C, Blasing T J, Hayden B P , et al. Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate[J]. Journal of Applied Meteorology, 1971,10(5):845-864.
doi: 10.1175/1520-0450(1971)010<0845:MTFSTG>2.0.CO;2 |
[12] |
Jacoby G C, Ivanciu I S, Ulan L D . A 263-year record of summer temperature for northern Quebec reconstructed from tree-ring data and evidence of a major climatic shift in the early 1800's[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988,64:69-78.
doi: 10.1016/0031-0182(88)90143-5 |
[13] |
Schweingruber F H, Bartholin T, Schaur E , et al. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland)[J]. Boreas, 1988,17(4):559-566.
doi: 10.1111/bor.1988.17.issue-4 |
[14] |
Hughes M K, Schweingruber F H, Cartwright D , et al. July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data[J]. Nature, 1984,308:341-344.
doi: 10.1038/308341a0 |
[15] | Conkey L E . Red spruce tree-ring widths and densities in Eastern North America as indicators of past climate[J]. Quaternary Research, 1986,26(2):232-243. |
[16] | Briffa K R, Jones P D, Schweingruber F H. Summer temperatures across northern North America: Regional reconstructions from 1760 using tree-ring densities[J]. Journal of Geophysical Research: Atmospheres, 1994,99(D12):25835-25844. |
[17] | 刘禹, 吴祥定, 安芷生 , 等. 树轮密度、稳定C同位素对过去近100 a陕西黄陵季节气温与降水的恢复[J]. 中国科学(地球科学), 1997,27(3):271-276. |
[ Liu Yu, Wu Xiangding, An Zhisheng, et a1. Seasonal precipitation and temperature reconstruction based on tree-ring density and stable carbon isotope. Scientia Sinica Terrae, 1997,27(3):271-276. ] | |
[18] | 张志华, 李骥 . 用树轮密度及宽度资料重建新疆吉木萨尔县的季节降水和最高温度[J]. 气象学报, 1998,56(1):77-86. |
[ Zhang Zhihua, Li Ji . Precipitation and average monthly high temperature in the Jimusare, Xinjiang as reconstructed from tree density and tree widths. Acta Meteorologica Sinica, 1998,56(1):77-86. ] | |
[19] | Duan J P, Li L, Ma Z G , et al. Post-industrial late summer warming recorded in tree-ring density in the eastern Tibetan Plateau[J]. International Journal of Climatology, 2020,40(2):795-804. |
[20] | Esper J, Klippel L, Krusic P J , et al. Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities[J]. Climate Dynamics, 2020,54:1367-1382. |
[21] | St. George S, Esper J. Concord and discord among Northern Hemisphere paleotemperature reconstructions from tree rings[J]. Quaternary Science Reviews, 2019,203:278-281. |
[22] | Esper J, Büntgen U, Hartl-Meier C , et al. Northern Hemisphere temperature anomalies during the 1450 s period of ambiguous volcanic forcing[J]. Bulletin of Volcanology, 2017,79(6):41. doi: 10.1007/s00445-017-1125-9. |
[23] | Duan J P, Ma Z G, Li L , et al. August-September temperature variability on the Tibetan Plateau: Past, present and future[J]. Journal of Geophysical Research: Atmospheres, 2019,124(12):6057-6068. |
[24] | Ljungqvist F C, Thejll P, Björklund J , et al. Assessing non-linearity in European temperature-sensitive tree-ring data[J]. Dendrochronologia, 2020,59:125652. doi: 10.1016/j.dendro.2019.125652. |
[25] | Björklund J, von Arx G, Nievergelt D, et al. Scientific merits and analytical challenges of tree‐ring densitometry[J]. Reviews of Geophysics, 2019,57(4):1224-1264. |
[26] | Björklund J, Seftigen K, Schweingruber F , et al. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers[J]. New Phytologist, 2017,216(3):728-740. |
[27] | Büntgen U, Frank D, Trouet V , et al. Diverse climate sensitivity of Mediterranean tree-ring width and density[J]. Trees, 2010,24(2):261-273. |
[28] | Takahashi K, Okuhara I, Tokumitsu Y , et al. Responses to climate by tree-ring widths and maximum latewood densities of two Abies species at upper and lower altitudinal distribution limits in central Japan[J]. Trees, 2011,25(4):745-753. |
[29] | Cerrato R, Salvatore M C, Gunnarson B E , et al. A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy[J]. Dendrochronologia, 2019,53:22-31. |
[30] | Nagavciuc V, Roibu C-C, Ionita M , et al. Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania[J]. Dendrochronologia, 2019,54:56-63. |
[31] |
Kaczka R J, Spyt B, Janecka K , et al. Different maximum latewood density and blue intensity measurements techniques reveal similar results[J]. Dendrochronologia, 2018,49:94-101.
doi: 10.1016/j.dendro.2018.03.005 |
[32] | Klippel L, Büntgen U, Konter O , et al. Climate sensitivity of high- and low-elevation Larix decidua MXD chronologies from the Tatra Mountains[J]. Dendrochronologia, 2020,60:125674. doi: 10.1016/j.dendro.2020.125674. |
[33] | Churakova O V, Fonti M V, Saurer M , et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions[J]. Climate of the Past, 2019,15(2):685-700. |
[34] | Büntgen U, Frank D C, Nievergelt D , et al. Summer temperature variations in the European Alps, A.D. 755-2004[J]. Journal of Climate, 2006,19(21):5606-5623. |
[35] | D'Arrigo R D, Jacoby G C, Free R M. Tree-ring width and maximum latewood density at the North American tree line: Parameters of climatic-change[J]. Canadian Journal of Forest Research, 1992,22(9):1290-1296. |
[36] | Björklund J, Seftigen K, Fonti P , et al. Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris[J]. Dendrochronologia, 2020,60:125673. doi: 10.1016/j.dendro.2020.125673. |
[37] | Campbell R, McCarroll D, Loader N J, et al. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy[J]. The Holocene, 2007,17(6):821-828. |
[38] | Kirdyanov A V, Treydte K S, Nikolaev A , et al. Climate signals in tree-ring width, density and δ 13C from larches in Eastern Siberia (Russia) [J]. Chemical Geology, 2008,252(1/2):31-41. |
[39] | Yuan Y J, Zhang T W, Wei W S , et al. Development of tree-ring maximum latewood density chronologies for the western Tien Shan Mountains, China: Influence of detrending: Method and climate response[J]. Dendrochronologia, 2013,31(3):192-197. |
[40] | Shen C C, Wang L L, Li M Y . The altitudinal variability and temporal instability of the climate-tree-ring growth relationships for Changbai larch (Larix olgensis Henry) in the Changbai mountains area, Jilin, Northeastern China[J]. Trees, 2016,30(3):901-912. |
[41] | 王丽丽, 邵雪梅, 黄磊 , 等. 黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应[J]. 植物生态学报, 2005,29(3):380-385. |
[ Wang Lili, Shao Xuemei, Huang Lei , et al. Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China. Acta Phytoecologica Sinica, 2005,29(3):380-385. ] | |
[42] | 侯迎, 王乃昂, 张学敏 , 等. 高频光密度测量法在崆峒山树轮年表建立中的应用[J]. 干旱区地理, 2010,33(2):236-242. |
[ Hou Ying, Wang Nai'ang, Zhang Xuemin, et a1. Application of high- frequency densitometry in establishment of chronology from Mt. Kongtong, Gansu Province. Arid Land Geography, 2010,33(2):236-242. ] | |
[43] | 喻树龙, 袁玉江, 陈峰 , 等. 巩乃斯河源树木年轮密度年表特征分析[J]. 沙漠与绿洲气象, 2010,4(4):6-11. |
[ Yu Shulong, Yuan Yujiang, Chen Feng , et al. Tree-ring density chronology features of Gongnaisi riverhead area in western Tianshan Mountain. Desert and Oasis Meteorology, 2010,4(4):6-11. ] | |
[44] | 张同文, 袁玉江, 喻树龙 , 等. 树轮灰度与树轮密度的对比分析及其对气候要素的响应[J]. 生态学报, 2011,31(22):6743-6752. |
[ Zhang Tongwen, Yuan Yujiang, Yu Shulong , et al. Contrastive analysis and climatic response of tree-ring gray values and tree-ring densities. Acta Ecologica Sinica, 201l, 31(22):6743-6752. ] | |
[45] | 黄科朝, 胥晓, 李霄峰 , 等. 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异[J]. 植物生态学报, 2014,38(3):270-280. |
[ Huang Kechao , Xu xiao, Li Xiaofeng, et al. Gender-specific characteristics of tree-ring growth and differential responses to climate change in the dioecious tree Populus cathayana in Xiaowutai Mountains, China. Chinese Journal of Plant Ecology, 2014,38(3):270-280. ] | |
[46] | Zhang P, Ionita M, Lohmann G , et al. Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?[J]. Climate Dynamics, 2017,49(7/8):2721-2736. |
[47] | Camarero J J, Rozas V, Olano J M . Minimum wood density of Juniperus thurifera is a robust proxy of spring water availability in a continental Mediterranean climate[J]. Journal of Biogeography, 2014,41(6):1105-1114. |
[48] | Camarero J J, Fernández-Pérez L, Kirdyanov A V , et al. Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions[J]. Trees, 2017,31(5):1423-1437. |
[49] | 杨银科, 黄强, 刘禹 , 等. 云杉树轮生长密度对气候要素的响应分析[J]. 西安理工大学学报, 2012,28(4):432-438. |
[ Yang Yinke, Huang Qiang, Liu Yu , et al. Response analysis between climate factors and the density of wood growth of Picea crassifolia. Journal of Xi'an University of Technology, 2012,28(4):432-438. ] | |
[50] |
Kurz-Besson C B, Lousada J L, Gaspar M J, et al. Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in Southern Portugal[J]. Frontiers in Plant Science, 2016,7:1170. doi: 10.3389/fpls.2016.01170.
pmid: 27570527 |
[51] | Zalloni E, Battipaglia G, Cherubini P , et al. Site conditions influence the climate signal of intra-annual density fluctuations in tree rings of Q-ilex L.[J]. Annals of Forest Science, 2018,75(3):68. doi: 10.1007/s13595-018-0748-0. |
[52] |
Zalloni E, Battipaglia G, Cherubini P , et al. Contrasting physiological responses to Mediterranean climate variability are revealed by intra-annual density fluctuations in tree rings of Quercus ilex L. and Pinus pinea L[J]. Tree Physiology, 2018,38(8):1213-1224.
doi: 10.1093/treephys/tpy061 pmid: 29920596 |
[53] | Zhang P, Björklund J, Linderholm H W . The influence of elevational differences in absolute maximum density values on regional climate reconstructions[J]. Trees, 2015,29(4):1259-1271. |
[54] | Zhang P, Linderholm H W, Gunnarson B E , et al. 1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density[J]. Climate of the Past, 2016,12(6):1297-1312. |
[55] | Franceschini T, Gauthray-Guyénet V, Schneider R , et al. Effect of thinning on the relationship between mean ring density and climate in black spruce (Picea mariana (Mill.) B.S.P.)[J]. Forestry: An International Journal of Forest Research, 2018,91(3):366-381. |
[56] | Koprowski M, Duncker P . Tree ring width and wood density as the indicators of climatic factors and insect outbreaks affecting spruce growth[J]. Ecological Indicators, 2012,23:332-337. |
[57] | Linderholm H W, Gunnarson B E . Were medieval warm-season temperatures in Jämtland, central Scandinavian Mountains, lower than previously estimated?[J]. Dendrochronologia, 2019,57:125607. doi: 10.1016/j.dendro.2019. 125607. |
[58] | Grudd H. Torneträsk tree-ring width and density AD 500-2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers[J]. Climate Dynamics, 2008,31(7/8):843-857. |
[59] | Linderholm H W, Björklund J, Seftigen K , et al. Fennoscandia revisited: A spatially improved tree-ring reconstruction of summer temperatures for the last 900 years[J]. Climate Dynamics, 2015,45(3/4):933-947. |
[60] | Matskovsky V V, Helama S . Testing long-term summer temperature reconstruction based on maximum density chronologies obtained by reanalysis of tree-ring data sets from northernmost Sweden and Finland[J]. Climate of the Past, 2014,10(4):1473-1487. |
[61] | Büntgen U, Frank D, Grudd H , et al. Long-term summer temperature variations in the Pyrenees[J]. Climate Dynamics, 2008,31(6):615-631. |
[62] | Dorado Liñán I, Büntgen U, González-Rouco F , et al. Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations[J]. Climate of the Past, 2012,8(3):919-933. |
[63] | Büntgen U, Krusic P J, Verstege A , et al. New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since Medieval Times[J]. Journal of Climate, 2017,30(14):5295-5318. |
[64] | Klippel L, Krusic P J, Konter O , et al. A 1200 + year reconstruction of temperature extremes for the northeastern Mediterranean region[J]. International Journal of Climatology, 2019,39(4):2336-2350. |
[65] | Rydval M, Gunnarson B E, Loader N J , et al. Spatial reconstruction of Scottish summer temperatures from tree rings[J]. International Journal of Climatology, 2017,37(3):1540-1556. |
[66] | D'Arrigo R, Mashig E, Frank D, et al. Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska[J]. Geophysical Research Letters, 2004,31(9):L09202. doi: 10.1029/2004gl019756. |
[67] | Jacoby G C, D'Arrigo R D. Tree-ring width and density evidence of climatic and potential forest change in Alaska[J]. Global Biogeochemical Cycles, 1995,9(2):227-234. |
[68] | Wiles G C, D'Arrigo R D, Jacoby G C. Temperature changes along the gulf of Alaska and the Pacific Northwest coast modeled from coastal tree rings[J]. Canadian Journal of Forest Research, 1996,26(3):474-481. |
[69] | Anchukaitis K J, D'Arrigo R D, Andreu-Hayles L, et al. Tree-ring-reconstructed summer temperatures from Northwestern North America during the last nine centuries[J]. Journal of Climate, 2013,26(10):3001-3012. |
[70] | O'Donnell A J, Allen K J, Evans R M, et al. Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees[J]. Global and Planetary Change, 2016,141:1-11. |
[71] | Björklund J A, Gunnarson B E, Seftigen K , et al. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information[J]. Climate of the Past, 2014,10(2):877-885. |
[72] | Briffa K R, Osborn T J, Schweingruber F H , et al. Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns[J]. The Holocene, 2002,12(6):759-789. |
[73] | Davi N K, Jacoby G C, Wiles G C . Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska[J]. Quaternary Research, 2003,60(3):252-262. |
[74] | 陈峰, 王慧琴, 袁玉江 , 等. 树轮最大密度记录的吉尔吉斯斯坦天山山区公元1650年以来的7—8月温度变化[J]. 沙漠与绿洲气象, 2014,8(4):1-7. |
[ Chen Feng, Wang Huiqin, Yuan Yujiang , et al. July-August temperature variability since A.D. 1650 inferred from tree-ring maximum density of Picea schrenkiana in the Tianshan Mountains, Kyrgyzstan. Desert and Oasis Meteorology, 2014,8(4):1-7. ] | |
[75] | Chen F, Yuan Y J, Wei W S , et al. Tree ring density-based summer temperature reconstruction for Zajsan Lake area, East Kazakhstan[J]. International Journal of Climatology, 2012,32(7):1089-1097. |
[76] | Davi N, D'Arrigo R, Jacoby G , et al. Warm-season annual to decadal temperature variability for Hokkaido, Japan, inferred from maximum latewood density (AD 1557-1990) and ring width data (AD 1532-1990)[J]. Climatic Change, 2002,52(1/2):201-217. |
[77] | Li M Y, Duan J P, Wang L , et al. Late summer temperature reconstruction based on tree-ring density for Sygera Mountain, southeastern Tibetan Plateau[J]. Global and Planetary Change, 2018,163:10-17. |
[78] | Liang H X, Lyu L X, Wahab M . A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China[J]. Dendrochronologia, 2016,37:1-8. |
[79] |
Li M Q, Huang L, Yin Z Y , et al. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau[J]. International Journal of Biometeorology, 2017,61(11):2021-2032.
doi: 10.1007/s00484-017-1395-0 pmid: 28685206 |
[80] | Li M Y, Wang L, Fan Z X , et al. Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,422:57-64. |
[81] | Yu S L, Yuan Y J, Wei W S , et al. A 352-year record of summer temperature reconstruction in the western Tianshan Mountains, China, as deduced from tree-ring density[J]. Quaternary Research, 2013,80(2):158-166. |
[82] | 陈峰, 袁玉江, 魏文寿 , 等. 树轮记录的贺兰山北部近208年5—7月温度变化[J]. 应用气象学报, 2011,22(4):463-471. |
[ Chen Feng, Yuan Yujiang, Wei Wenshou , et al. May-July temperature variability since 1801 inferred from tree rings of Pinus tabulaeformis of Helan Mountains in China. Journal of Applied Meteorological Science, 2011,22(4):463-471. ] | |
[83] | Sun Y, Wang L L, Chen J , et al. Reconstructing mean maximum temperatures of May-August from tree-ring maximum density in North Da Hinggan Mountains, China[J]. Chinese Science Bulletin, 2012,57(16):2007-2014. |
[84] | 陈峰, 袁玉江, 魏文寿 , 等. 利用树轮密度重建新疆北部5—8月温度变化[J]. 冰川冻土, 2017,39(1):43-53. |
[ Chen Feng, Yuan Yujiang, Wei Wenshou , et al. Air temperature from May through August in northern Xinjiang reconstructed from multi-site tree-ring density. Journal of Glaciology and Geocryology, 2017,39(1):43-53. ] | |
[85] | Xing P, Zhang Q B, Lv L X . Absence of late-summer warming trend over the past two and half centuries on the eastern Tibetan Plateau[J]. Global and Planetary Change, 2014,123:27-35. |
[86] |
Chen F, Yuan Y . May-June maximum temperature reconstruction from mean earlywood density in north Central China and its linkages to the summer monsoon activities[J]. PLoS ONE, 2014,9(9):e107501. doi: 10.1371/journal.pone.0107501.
pmid: 25207554 |
[87] | 杨银科, 黄强, 刘禹 , 等. 以树木年轮密度资料重建鄂尔多斯中部地区6至10月降水量的变化[J]. 西北农林科技大学学报(自然科学版), 2013,41(8):96-102, 109. |
[ Yang Yinke, Huang Qiang, Liu Yu , et al. Tree-ring density based precipitation reconstruction from June to October in Central Ordos. Journal of Northwest A& F University (Natural Science Edition), 2013,41(8):96-102, 109. ] | |
[88] | Wang L, Duan J P, Chen J , et al. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China[J]. International Journal of Climatology, 2010,30(7):972-979. |
[89] | Duan J P, Zhang Q B . A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity[J]. Journal of Geophysical Research: Atmospheres, 2014,119(20):11578-11592. |
[90] | 吴普, 王丽丽, 邵雪梅 . 采用高山松最大密度重建川西高原近百年夏季气温[J]. 地理学报, 2005,60(6):998-1006. |
[ Wu Pu, Wang Lili, Shao Xuemei . Reconstruction of summer temperature from maximum latewood density of Pinus densata in west Sichuan. Acta Geographica Sinica, 2005,60(6):998-1006. ] | |
[91] | 段建平, 王丽丽, 李论 , 等. 树轮最大密度记录的贡嘎山区公元1837年以来的温度变化[J]. 科学通报, 2010,55(11):1036-1042. |
[ Duan Jianping, Wang Lili, Li Lun , et a1. Temperature variability since A.D. 1837 inferred from tree-ring maximum density of Abies fabric in Gongga Mountains, China. Chinese Science Bulletin, 2010,55(11):1036-1042. ] | |
[92] | Fan Z X, Bräuning A, Yang B , et al. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in Southern China[J]. Global and Planetary Change, 2009,65(1/2):1-11. |
[93] | 陈津, 王丽丽, 朱海峰 , 等. 用天山雪岭云杉年轮最大密度重建新疆伊犁地区春夏季平均最高温度变化[J]. 科学通报, 2009,54(9):1295-1302. |
[ Chen Jin, Wang Lili, Zhu Haifeng, et a1. Reconstructing mean maximum temperature of growing season from the maximum density of the Sehrenk Spruce in Yili, Xinjiang, China. Chinese Science Bulletin, 2009,54(9):1295-1302. ] | |
[94] | 陈峰, 袁玉江, 魏文寿 , 等. 树轮记录的过去384a乌鲁木齐河源7月温度变化[J]. 冰川冻土, 2011,33(1):55-63. |
[ Chen Feng, Yuan Yujiang, Wei Wenshou , et al. July temperature at the upper treeline recorded in the tree-ring in the headwaters of the Urumqi River. Journal of Glaciology and Geocryology, 2011,33(1):55-63. ] | |
[95] | 陈峰, 袁玉江, 魏文寿 , 等. 用西伯利亚落叶松年轮最大密度重建和布克赛尔5—8月份平均最高温度[J]. 生态学报, 2010,30(17):4652-4658. |
[ Chen Feng, Yuan Yujiang, Wei Wenshou , et al. Dendroclimatic reconstruction of mean maximum May-August temperature from the maximum density of the Larix sibirica in Hoboksar, China. Acta Ecologica Sinica, 2010,30(17):4652-4658. ] | |
[96] | 孙毓, 王丽丽, 陈津 . 长白落叶松树轮生长对气候变化的响应以及对夏季气温的重建[J]. 地球环境学报, 2012,3(3):889-899. |
[ Sun Yu, Wang Lili, Chen Jin . Response of tree growth to climate change and reconstruction of summer temperature based on Korean larch. Journal of Earth Environment, 2012,3(3):889-899. ] | |
[97] | Jones P D, Briffa K R, Schweingruber F H . Tree-ring evidence of the widespread effects of explosive volcanic-eruptions[J]. Geophysical Research Letters, 1995,22(11):1333-1336. |
[98] | Schneider L, Smerdon J E, Pretis F , et al. Corrigendum: A new archive of large volcanic events over the past millennium derived from reconstructed summer temperatures[J]. Environmental Research Letters, 2017,12(11):119501. doi: 10.1088/1748-9326/aa9426. |
[99] | Briffa K R, Jones P D, Schweingruber F H , et al. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years[J]. Nature, 1998,393:450-455. |
[100] | 李明启, 邵雪梅 . 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016,31(6):634-642. |
[ Li Mingqi, Shao Xuemei . Study on the relationship between large volcanic eruptions and temperature variation based on tree-ring data in the eastern Tibetan Plateau during the past millennium. Advances in Earth Science, 2016,31(6):634-642. ] | |
[101] | Esper J, Schneider L, Smerdon J E , et al. Signals and memory in tree-ring width and density data[J]. Dendrochronologia, 2015,35:62-70. |
[102] | Briffa K R, Jones P D, Schweingruber F H. Tree-ring density reconstructions of summer temperature patterns across Western North America since 1600[J]. Journal of Climate, 1992,5(7):735-754. |
[103] | Duan J P, Li L, Ma Z G , et al. Summer cooling driven by large volcanic eruptions over the Tibetan Plateau[J]. Journal of Climate, 2018,31(24):9869-9879. |
[104] | Mann M E, Fuentes J D, Rutherford S . Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures[J]. Nature Geoscience, 2012,5(3):202-205. |
[105] | Esper J, Büntgen U, Luterbacher J , et al. Testing the hypojournal of post-volcanic missing rings in temperature sensitive dendrochronological data[J]. Dendrochronologia, 2013,31(3):216-222. |
[106] | Tingley M P, Stine A R, Huybers P . Temperature reconstructions from tree-ring densities overestimate volcanic cooling[J]. Geophysical Research Letters, 2014,41(22):7838-7845. |
[107] | Stoffel M, Khodri M, Corona C , et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years[J]. Nature Geoscience, 2015,8(10):784-788. |
[108] | Schneider L, Smerdon J E, Büntgen U , et al. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network[J]. Geophysical Research Letters, 2015,42(11):4556-4562. |
[109] | D'Arrigo R, Jacoby G, Buckley B, et al. Tree growth and inferred temperature variability at the North American Arctic treeline[J]. Global and Planetary Change, 2009,65(1/2):71-82. |
[110] | Briffa K R, Schweingruber F H, Jones P D , et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes[J]. Nature, 1998,391:678-682. |
[1] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[2] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[3] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[4] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[5] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[6] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[7] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[8] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[9] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[10] | Lingbo XIAO. Spatiotemporal distribution of high flood risk areas in China, 1736-1911 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 495-503. |
[11] | Bojie FU. Thoughts on the recent development of physical geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 1-7. |
[12] | Jingyun ZHENG, Xiuqi FANG, Shaohong WU. Recent progress of climate change research in physical geography studies from China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 16-27. |
[13] | Shaohong WU, Jiangbo GAO, Haoyu DENG, Lulu LIU, Tao PAN. Climate change risk and methodology for its quantitative assessment [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 28-35. |
[14] | Junhui YAN, Haolong LIU, Quansheng Ge, Jingyun ZHENG, Zhixin HAO, Yimin WANG. Reconstruction and analysis of annual mean temperature of Wuhan for the 1906-2015 period [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1176-1183. |
[15] | Wenjie HUANG, Quansheng GE, Junhu DAI, Huanjiong WANG. Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China [J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 1015-1024. |
|