PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (8): 1356-1366.doi: 10.18306/dlkxjz.2020.08.010
• Articles • Previous Articles Next Articles
DONG Wenqian1(), DONG Liang2,3, XIANG Lin1,*(
), TAO Haijun1, ZHAO Chuanhu4, QU Hanbing2,3
Received:
2019-07-09
Revised:
2019-11-04
Online:
2020-08-28
Published:
2020-10-28
Contact:
XIANG Lin
E-mail:wqdong.chn@live.com;xianglin@cjlu.edu.cn
Supported by:
DONG Wenqian, DONG Liang, XIANG Lin, TAO Haijun, ZHAO Chuanhu, QU Hanbing. Spatial pattern of urban management cases based on Log Gaussian Cox Processes[J].PROGRESS IN GEOGRAPHY, 2020, 39(8): 1356-1366.
Tab.3
Summaries of the posterior random field hyper-parameters in the LGCP model"
参数 | 均值 | 标准差 | 2.5%分位数 | 97.5%分位数 | |
---|---|---|---|---|---|
街面秩序类 | 1.5161 | 0.1219 | 1.2946 | 1.7731 | |
0.6897 | 0.0324 | 0.6297 | 0.7567 | ||
市容环境类 | 0.9505 | 0.0816 | 0.8024 | 1.1227 | |
0.7210 | 0.0372 | 0.6522 | 0.7983 | ||
宣传广告类 | 1.2771 | 0.1230 | 1.0574 | 1.5396 | |
0.8279 | 0.0460 | 0.7437 | 0.9242 |
Tab.4
Summaries of the posterior covariates parameters in the LGCP model"
城管事件类型 | 协变量 | 均值 | 标准差 | 2.5%分位数 | 97.5%分位数 |
---|---|---|---|---|---|
街面秩序类事件 | 截距 | 0.9891 | 0.0122 | 0.9656 | 1.0130 |
0.3906* | 0.0726 | 0.3387 | 0.4503 | ||
0.8288* | 0.0526 | 0.7474 | 0.9189 | ||
1.7451* | 0.0454 | 1.5963 | 1.9075 | ||
4.9590* | 0.0848 | 4.1980 | 5.8574 | ||
1.0134 | 0.0828 | 0.8613 | 1.1921 | ||
1.2264* | 0.0272 | 1.1626 | 1.2936 | ||
1.1971* | 0.0444 | 1.0972 | 1.3060 | ||
0.5372* | 0.0815 | 0.4577 | 0.6304 | ||
市容环境类事件 | 截距 | 0.6619* | 0.0161 | 0.6414 | 0.6832 |
0.3364* | 0.0749 | 0.2904 | 0.3895 | ||
0.9001 | 0.0593 | 0.8028 | 1.0092 | ||
1.4776* | 0.0493 | 1.3411 | 1.6276 | ||
5.9174* | 0.0880 | 4.9789 | 7.0315 | ||
1.6981* | 0.0869 | 1.4318 | 2.0138 | ||
0.6726* | 0.0293 | 0.6350 | 0.7124 | ||
3.6503* | 0.0465 | 3.3318 | 3.9992 | ||
0.2838* | 0.0923 | 0.2368 | 0.3402 | ||
宣传广告类事件 | 截距 | 0.8779* | 0.0135 | 0.8550 | 0.9015 |
0.3322* | 0.0763 | 0.2860 | 0.3858 | ||
0.7966* | 0.0557 | 0.7141 | 0.8884 | ||
0.8907* | 0.0475 | 0.8113 | 0.9777 | ||
9.9115* | 0.0894 | 8.3170 | 11.8106 | ||
1.2930* | 0.0879 | 1.0882 | 1.5363 | ||
0.8584* | 0.0321 | 0.8059 | 0.9141 | ||
2.8320* | 0.0486 | 2.5744 | 3.1152 | ||
0.4776* | 0.0897 | 0.4004 | 0.5696 |
[1] | Knox P L, McCarthy L M. 城市化: 城市地理学导论 [M]. 3版. 姜付仁, 万金红, 董磊华, 等, 译. 北京: 电子工业出版社, 2016. |
[ Knox P L, McCarthy L M. Urbanization: An introduction to urban geography. 3rd Edition. Translated by Jiang Furen, Wan Jinhong, Dong Leihua, et al. Beijing, China: Publishing House of Electronics Industry, 2016. ] | |
[2] | 李颖玥, 刘朝晖. 中国数字化城市管理发展综述[J]. 智能建筑与智慧城市, 2017(2):28-32. |
[ Li Yingyue, Liu Zhaohui. Review on the development of digital city management in China. Intelligent Building & Smart City, 2017(2):28-32. ] | |
[3] |
徐智邦, 周亮, 蓝婷, 等. 基于POI数据的巨型城市消防站空间优化: 以北京市五环内区域为例[J]. 地理科学进展, 2018,37(4):535-546.
doi: 10.18306/dlkxjz.2018.04.009 |
[ Xu Zhibang, Zhou Liang, Lan Ting, et al. Spatial optimization of mega-city fire station distribution based on point of interest data: A case study within the 5th Ring Road in Beijing. Progress in Geography, 2018,37(4):535-546. ] | |
[4] | 曾璇, 崔海山, 刘毅华. 基于网络空间点模式的餐饮店空间格局分析[J]. 地球信息科学学报, 2018,20(6):837-843. |
[ Zeng Xuan, Cui Haishan, Liu Yihua. Analysis on spatial distribution characteristics of restaurant based on network spatial point model. Journal of Geo-Information Science, 2018,20(6):837-843. ] | |
[5] | 李钢, 陈未雨, 杨兰, 等. 武汉市快递自提点的空间格局与集聚模式研究[J]. 地理科学进展, 2019,38(3):407-416. |
[ Li Gang, Chen Weiyu, Yang Lan, et al. Spatial pattern and agglomeration mode of parcel collection and delivery points in Wuhan City. Progress in Geography, 2019,38(3):407-416. ] | |
[6] | 柳林, 姜超, 周素红, 等. 城市入室盗窃犯罪的多尺度时空格局分析: 基于中国H市DP半岛的案例研究[J]. 地理研究, 2017,36(12):2451-2464. |
[ Liu Lin, Jiang Chao, Zhou Suhong, et al. Spatial-temporal patterns of burglary at multiple scales: The case of DP Peninsula in H City, China. Geographical Research, 2017,36(12):2451-2464. ] | |
[7] | 强思维, 陈夏明, 姜开达, 等. 基于移动网络流量日志的城市时空行为分析[J]. 计算机研究与发展, 2016,53(4):932-940. |
[ Qiang Siwei, Chen Xiaming, Jiang Kaida, et al. Urban spatio-temporal behavior analysis based on mobile network traffic logs. Journal of Computer Research and Development, 2016,53(4):932-940. ] | |
[8] | 袁坚, 王鹏, 王钺, 等. 基于时空特征的城市轨道交通客流量预测方法[J]. 北京交通大学学报, 2017,41(6):42-48. |
[ Yuan Jian, Wang Peng, Wang Yue, et al. A passenger volume prediction method based on temporal and spatial characteristics for urban rail transit. Journal of Beijing Jiaotong University, 2017,41(6):42-48. ] | |
[9] | 赵永. 空间数据统计分析的思想起源与应用演化[J]. 地理研究, 2018,37(10):2058-2074. |
[ Zhao Yong. The origin and application history of statistical analysis of spatial data. Geographical Research, 2018,37(10):2058-2074. ] | |
[10] | 佘冰, 朱欣焰, 呙维, 等. 基于空间点模式分析的城市管理事件空间分布及演化: 以武汉市江汉区为例[J]. 地理科学进展, 2013,32(6):924-931. |
[ She Bing, Zhu Xinyan, Guo Wei, et al. Spatial distribution and evolution of city management events based on the spatial point pattern analysis: A case study of Jianghan District, Wuhan City. Progress in Geography, 2013,32(6):924-931. ] | |
[11] | 伏家云, 靖常峰, 杜明义, 等. 参数优化DBSCAN算法的城管案件聚类分析[J]. 测绘科学, 2018,43(8):135-140. |
[ Fu Jiayun, Jing Changfeng, Du Mingyi, et al. Urban management case spatial clustering analysis based on a parameter optimized DBSCAN algorithm. Science of Surveying and Mapping, 2018,43(8):135-140. ] | |
[12] | 靖常峰, 付艳丽, 戴培培, 等. 近邻指数的城管案件全局分布模式分析[J]. 测绘科学, 2017,42(6):76-81. |
[ Jing Changfeng, Fu Yanli, Dai Peipei, et al. Spatial pattern analysis on global distribution of urban management case based on nearest index. Science of Surveying and Mapping, 2017,42(6):76-81. ] | |
[13] | 聂可, 王振声, 杜清运, 等. 网络约束点格局分析研究综述[J]. 地理科学进展, 2017,36(10):1196-1207. |
[ Nie Ke, Wang Zhensheng, Du Qingyun, et al. A review of network-constrained point pattern analysis. Progress in Geography, 2017, 36(10):1196-1207. ]. | |
[14] | 马志波, 肖文发, 黄清麟, 等. 生态学中的点格局研究概况及其在国内的应用[J]. 生态学报, 2017,37(19):6624-6632. |
[ Ma Zhibo, Xiao Wenfa, Huang Qinglin, et al. A review of point pattern analysis in ecology and its application in China. Acta Ecologica Sinica, 2017,37(19):6624-6632. ] | |
[15] | Illian J, Penttinen A, Stoyan H, et al. Statistical analysis and modelling of spatial point patterns[M]. London, UK: John Wiley and Sons, 2008: 110-123. |
[16] | 裴韬, 李婷, 周成虎. 时空点过程: 一种新的地学数据模型、分析方法和观察视角[J]. 地球信息科学学报, 2013,15(6):793-800. |
[ Pei Tao, Li Ting, Zhou Chenghu. Spatiotemporal point process: A new data model, analysis methodology and viewpoint for geoscientific problem. Journal of Geo-information Science, 2013,15(6):793-800. ] | |
[17] | Illian J B, Martino S, Sørbye S H, et al. Fitting complex ecological point process models with integrated nested Laplace approximation[J]. Methods in Ecology and Evolution, 2013,4(4):305-315. |
[18] | Waagepetersen R, Guan Y, Jalilian A, et al. Analysis of multispecies pointpatterns by using multivariate Log-Gaussian Cox Processes[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2016,65(1):77-96. |
[19] | Law R, Illian J, Burslem D F, et al. Ecological information from spatial patterns of plants: Insights from point process theory[J]. Journal of Ecology, 2009,97(4):616-628. |
[20] | Wiegand T, Moloney K A. Handbook of spatial point-pattern analysis in ecology [M]. Boca Raton, USA: CRC Press, 2013: 26-39. |
[21] | Velázquez E, Martínez I, Getzin S, et al. An evaluation of the state of spatial point pattern analysis in ecology[J]. Ecography, 2016,39(11):1042-1055. |
[22] | Møller J, Syversveen A R, Waagepetersen R P. Log Gaussian Cox Processes[J]. Scandinavian Journal of Statistics, 1998,25(3):451-482. |
[23] | Diggle P J. Statistical analysis of spatial and spatio-temporal point patterns, third edition [M]. Boca Raton, USA: CRC Press, 2013: 167-172. |
[24] | Dong G, Ma J, Wei R, et al. Electric vehicle charging point placement optimisation by exploiting spatial statistics and maximal coverage location models[J]. Transportation Research Part D: Transport and Environment, 2019,67:77-88. |
[25] | Cui Q, Wang N, Haenggi M. Spatial point process modeling of vehicles in large and small cities [R]. GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore, Singapore: IEEE, 2017: 1-7. |
[26] | Møller J, Waagepetersen R P. Modern statistics for spatial point processes[J]. Scandinavian Journal of Statistics, 2007,34(4):643-684. |
[27] | Diggle P J, Moraga P, Rowlingson B, et al. Spatial and spatio-temporal Log-Gaussian Cox Processes: Extending the geostatistical paradigm[J]. Statistical Science, 2013,28(4):542-563. |
[28] | Taylor B, Davies T, Rowlingson B, et al. Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate Log-Gaussian Cox Processes in R[J]. Journal of Statistical Software, 2015,63(7):1-48. |
[29] | Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011,73(4):423-498. |
[30] | Illian J B, Sørbye S H, Rue H. A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA)[J]. The Annals of Applied Statistics, 2012,6(4):1499-1530. |
[31] | Simpson D, Illian J B, Lindgren F, et al. Going off grid: Computationally efficient inference for Log-Gaussian Cox Processes[J]. Biometrika, 2016,103(1):49-70. |
[32] | Cameletti M, Lindgren F, Simpson D, et al. Spatio-temporal modeling of particulate matter concentration through the SPDE approach[J]. Advances in Statistical Analysis, 2013,97(2):109-131. |
[33] | Blangiardo M, Cameletti M. Spatial and spatio-temporal Bayesian models with R-INLA[M]. London, UK: John Wiley and Sons, 2015: 193-198. |
[34] |
Teng M, Nathoo F, Johnson T D. Bayesian computation for Log-Gaussian Cox Processes: A comparative analysis of methods[J]. Journal of Statistical Computation and Simulation, 2017,87(11):2227-2252.
doi: 10.1080/00949655.2017.1326117 pmid: 29200537 |
[35] | Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2009,71(2):319-392. |
[36] | Zhang S, Liu X, Tang J, et al. Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach[J]. Physica A: Statistical Mechanics and Its Applications, 2018,512:537-551. |
[1] | SHE Bing, ZHU Xinyan, GUO Wei, XU Xiao. Spatial distribution and evolution of city management events based on the spatial point pattern analysis: A case study of Jianghan District, Wuhan City [J]. PROGRESS IN GEOGRAPHY, 2013, 32(6): 924-931. |
|