PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (5): 841-852.doi: 10.18306/dlkxjz.2020.05.012
• Special Column: Crime Geography • Previous Articles Next Articles
LIU Yimeng, LI Weihong*(), WANG Xin
Received:
2019-09-24
Revised:
2020-02-02
Online:
2020-05-28
Published:
2020-07-28
Contact:
LI Weihong
E-mail:hongweili9981@163.com
Supported by:
LIU Yimeng, LI Weihong, WANG Xin. Spatiotemporal distribution of drug crimes at micro-scale: Taking NH and DM residential communities in SZ City as an example[J].PROGRESS IN GEOGRAPHY, 2020, 39(5): 841-852.
Tab.1
Data of NH and DM residential communities"
区域 | 面积/km2 | 居民面面积密度/(km2/km2) | 流动人口密度/(万人/km2) | 道路密度/(km/km2) | 毒品犯罪数量/个 |
---|---|---|---|---|---|
HR社区 | 0.2719 | 0.4386 | 7.3145 | 27.7034 | 397 |
HB社区 | 0.2366 | 0.3782 | 6.6923 | 36.0450 | 392 |
XX社区 | 0.2113 | 0.3746 | 7.3594 | 34.4651 | 618 |
JN社区 | 0.2647 | 0.3108 | 4.0139 | 42.4013 | 452 |
DM社区 | 0.1673 | 0.4446 | 5.8316 | 35.8341 | 153 |
JB社区 | 0.1496 | 0.4356 | 5.3669 | 46.8281 | 173 |
YY社区 | 0.2439 | 0.3217 | 0.5489 | 29.1530 | 261 |
LX社区 | 0.5615 | 0.1598 | 0.7651 | 34.4173 | 66 |
CD社区 | 0.0909 | 0.5629 | 3.8510 | 32.1671 | 75 |
WJ社区 | 0.2767 | 0.2004 | 4.7269 | 33.3276 | 227 |
LL社区 | 0.2687 | 0.3776 | 4.5917 | 34.2651 | 354 |
XN社区 | 0.1139 | 0.2606 | 2.9650 | 31.3794 | 77 |
LHQ社区 | 0.0925 | 0.3358 | 2.1895 | 32.7419 | 99 |
HP社区 | 0.1183 | 0.3238 | 1.6810 | 42.9612 | 79 |
YC社区 | 0.1118 | 0.2586 | 4.4269 | 47.4451 | 147 |
HC社区 | 0.4192 | 0.2363 | 1.8833 | 32.8779 | 87 |
Tab.2
Average nearest neighbor cluster analysis of drug crimes in NH and DM residential communities, 2009-2018"
毒品犯罪资料年度 | 平均最近邻距离/m | 期望最近邻距离/m | 最近邻指数 | Z值 |
---|---|---|---|---|
2009 | 18.13 | 36.04 | 0.503174*** | -25.485873 |
2010 | 20.37 | 41.85 | 0.486784*** | -23.563643 |
2011 | 27.90 | 46.14 | 0.604639*** | -15.883410 |
2012 | 26.35 | 49.44 | 0.532951*** | -17.394550 |
2013 | 30.63 | 50.21 | 0.609894*** | -13.981935 |
2014 | 32.84 | 52.59 | 0.624494*** | -13.128682 |
2015 | 34.22 | 54.64 | 0.626347*** | -12.686879 |
2016 | 45.14 | 66.37 | 0.680198*** | -8.781033 |
2017 | 47.45 | 71.96 | 0.659333*** | -8.371492 |
2018 | 48.13 | 71.38 | 0.674258*** | -8.220137 |
2009—2018年 | 6.03 | 16.56 | 0.364209*** | -74.830417 |
Tab.3
Location entropy of drug crime rate of different land use types in XX community (Qi)"
序号 | 用地类型 | 面积/km2 | 毒品犯罪数量/个 | 毒品犯罪率区位熵(Qi) |
---|---|---|---|---|
1 | 党政机关政法团体 | 0.54 | 4 | 0.243934 |
2 | 科研开发教育机构 | 0.35 | 1 | 0.093903 |
3 | 医疗卫生保健福利 | 0.51 | 10 | 0.650487 |
4 | 新闻媒体文化体育 | 0.1 | 3 | 0.960384 |
5 | 水电建筑城建环保 | 0 | 0 | 0 |
6 | 金融保险邮政电信 | 0.82 | 24 | 0.959366 |
7 | 农林牧渔宠物园艺 | 0.05 | 1 | 0.642476 |
8 | 商业科技贸易公司 | 0.39 | 6 | 0.506511 |
9 | 纺织建材食品加工 | 0.01 | 0 | 0 |
10 | 机械化工电器制造 | 0 | 0 | 0 |
11 | 住宿旅游娱乐 | 2.45 | 128 | 1.723174 |
12 | 居民服务商务服务 | 1.76 | 71 | 1.327987 |
13 | 房产园区商务楼宇 | 6.54 | 175 | 0.880289 |
14 | 商业百货批发零售 | 1.92 | 68 | 1.168733 |
15 | 交通运输物流仓储 | 2.97 | 65 | 0.719284 |
16 | 餐饮经营服务品牌 | 2.72 | 86 | 1.042033 |
Tab.4
Location entropy of drug crime rate in HR and HB communities"
序号 | 用地类型 | 面积/km2 | 毒品犯罪数量/个 | 毒品犯罪率区位熵(Qi) |
---|---|---|---|---|
1 | 党政机关政法团体 | 1.83 | 24 | 0.817773 |
2 | 科研开发教育机构 | 0.91 | 11 | 0.756084 |
3 | 医疗卫生保健福利 | 0.95 | 11 | 0.722779 |
4 | 新闻媒体文化体育 | 1.22 | 18 | 0.923064 |
5 | 水电建筑城建环保 | 0.15 | 0 | 0 |
6 | 金融保险邮政电信 | 1.94 | 21 | 0.675579 |
7 | 农林牧渔宠物园艺 | 0.14 | 0 | 0 |
8 | 商业科技贸易公司 | 0.59 | 7 | 0.737111 |
9 | 纺织建材食品加工 | 0.02 | 0 | 0 |
10 | 机械化工电器制造 | 0 | 0 | 0 |
11 | 住宿旅游娱乐 | 4.28 | 208 | 3.031710 |
12 | 居民服务商务服务 | 2.73 | 39 | 0.892887 |
13 | 房产园区商务楼宇 | 15.89 | 173 | 0.679480 |
14 | 商业百货批发零售 | 9.85 | 163 | 1.032380 |
15 | 交通运输物流仓储 | 5.79 | 63 | 0.678177 |
16 | 餐饮经营服务品牌 | 4.57 | 77 | 1.050990 |
Tab.5
Location entropy of drug crime rate of different land use types in JN community (Qi)"
序号 | 用地类型 | 面积/km2 | 毒品犯罪数量/个 | 毒品犯罪率区位熵(Qi) |
---|---|---|---|---|
1 | 党政机关政法团体 | 0.97 | 9 | 0.521638 |
2 | 科研开发教育机构 | 1.83 | 3 | 0.092286 |
3 | 医疗卫生保健福利 | 1.42 | 21 | 0.835206 |
4 | 新闻媒体文化体育 | 0.45 | 4 | 0.501637 |
5 | 水电建筑城建环保 | 0 | 0 | 0 |
6 | 金融保险邮政电信 | 0.81 | 3 | 0.209177 |
7 | 农林牧渔宠物园艺 | 0.16 | 1 | 0.343831 |
8 | 商业科技贸易公司 | 0.02 | 0 | 0 |
9 | 纺织建材食品加工 | 0 | 0 | 0 |
10 | 机械化工电器制造 | 0 | 0 | 0 |
11 | 住宿旅游娱乐 | 3.85 | 149 | 2.176620 |
12 | 居民服务商务服务 | 2.02 | 20 | 0.557126 |
13 | 房产园区商务楼宇 | 4.27 | 62 | 0.818716 |
14 | 商业百货批发零售 | 2.79 | 51 | 1.028359 |
15 | 交通运输物流仓储 | 4.80 | 81 | 0.950060 |
16 | 餐饮经营服务品牌 | 3.08 | 66 | 1.207736 |
[1] | 梅建明 . 论环境犯罪学的起源、发展与贡献 [J]. 中国人民公安大学学报(社会科学版), 2006(5):66-72. |
[ Mei Jianming . On the origin, development and contribution of environmental criminology. Journal of the People's Public Security University of China (Social Sciences), 2006(5):66-72. ] | |
[2] |
姜超, 唐焕丽, 柳林 . 中国犯罪地理研究述评 [J]. 地理科学进展, 2014,33(4):561-573.
doi: 10.11820/dlkxjz.2014.04.013 |
[ Jiang Chao, Tang Huanli, Liu Lin . Review of crime geography in China. Progress in Geography, 2014,33(4):561-573. ]
doi: 10.11820/dlkxjz.2014.04.013 |
|
[3] | Weisburd D, Mazerolle L G . Crime and disorder in drug hot spots: Implications for theory and practice in policing [J]. Police Quarterly, 2000,3(3):331-349. |
[4] | Sherman L W, Gartin P R, Buerger M E . Hot spots of predatory crime: Routine activities and the criminology of place [J]. Criminology, 1989,27(1):27-56. |
[5] | 李卫红, 童昊昕 . 针对非平衡警情数据改进的K-Means-Boosting-BP模型 [J]. 中国图象图形学报, 2017,22(9):1314-1324. |
[ Li Weihong, Tong Haoxin . Improved K-Means-Boosting BP model that targets unbalanced police intelligence data. Journal of Image and Graphics, 2017,22(9):1314-1324. ] | |
[6] | 柳林, 张春霞, 冯嘉欣 , 等. ZG市诈骗犯罪的时空分布与影响因素 [J]. 地理学报, 2017,72(2):315-328. |
[ Liu Lin, Zhang Chunxia, Feng Jiaxin , et al. The spatial-temporal distribution and influencing factors of fraud crime in ZG City, China. Acta Geographica Sinica, 2017,72(2):315-328. ] | |
[7] | 张宁, 王大为 . 基于风险地形建模的毒品犯罪风险评估和警务预测 [J]. 地理科学进展, 2018,37(8):1131-1139. |
[ Zhang Ning, Wang Dawei . Drug-related crime risk assessment and predictive policing based on risk terrain modeling. Progress in Geography, 2018,37(8):1131-1139. ] | |
[8] | 李卫红, 闻磊, 陈业滨 . 改进的GA-BP神经网络模型在财产犯罪预测中的应用 [J]. 武汉大学学报(信息科学版), 2017,42(8):1110-1117. |
[ Li Weihong, Wen Lei, Chen Yebin . Property crime forecast based on improved GA-BP neural network model. Geomatics and Information Science of Wuhan University, 2017,42(8):1110-1117. ] | |
[9] | 陈鹏, 疏学明 . 时空犯罪热点预测模型研究 [J]. 系统仿真学报, 2011,23(9):1782-1786. |
[ Chen Peng, Shu Xueming . Research about spatial-temporal forecasting of crime hotspots. Journal of System Simulation, 2011,23(9):1782-1786. ] | |
[10] | Hart T C, Miethe T D . Street robbery and public bus stops: A case study of activity nodes and situational risk [J]. Security Journal, 2014,27(2):180-193. |
[11] | 肖露子, 柳林, 周素红 , 等. ZG市工作日地铁站点扒窃案件的时空分布及其影响因素 [J]. 地理科学, 2018,38(8):1227-1234. |
[ Xiao Luzi, Liu Lin, Zhou Suhong , et al. Spatio-temporal pattern of pickpocketing at subway stations on weekdays of ZG City and its influencing factors. Scientia Geographica Sinica, 2018,38(8):1227-1234. ] | |
[12] | Qin X X, Liu L . Evaluating the relationships of bus transit with street and off-street robberies [J]. The Professional Geographer, 2016,68(2):1-11. |
[13] | 闻磊, 李卫红, 戴侃 , 等. 空间视角下中国城市财产犯罪成因分析 [J]. 测绘科学, 2015,40(8):152-157. |
[ Wen Lei, Li Weihong, Dai Kan , et al. Causes research of urban property crime in the spatial perspective in China. Science of Surveying and Mapping, 2015,40(8):152-157. ] | |
[14] | Stucky T D, Ottensmann J R . Land use and violent crime [J]. Criminology, 2009,47(4):1223-1264. |
[15] | 李卫红, 戴侃, 闻磊 . 顾及地理因素的犯罪地理目标模型改进方法 [J]. 测绘科学, 2015,40(7):86-91, 149. |
[ Li WeiHong, Dai Kan, Wen Lei . Improvement of criminal geographic targeting model considering geographic factors. Science of Surveying and Mapping, 2015,40(7):86-91, 149. ] | |
[16] | Braga AA, Papachristos A V, Hureau D M . The effects of hot spots policing on crime: An updated systematic review and meta-analysis [J]. Justice Quarterly, 2014,31(4):633-663. |
[17] | Copes H . Routine activities and motor vehicle theft: A crime specific approach [J]. Journal of Crime and Justice, 1999,22(2):125-146. |
[18] | Lu Y, Chen X . On the false alarm of planar K-function when analyzing urban crime distributed along streets [J]. Social Science Research, 2007,36(2):611-632. |
[19] | 徐冲, 柳林, 周素红 . DP半岛街头抢劫案件的临近重复发生模式 [J]. 地理研究, 2015,34(2):384-394. |
[ Xu Chong, Liu Lin, Zhou Suhong . Patterns of near-repeat street robbery in DP Peninsula. Geographical Research, 2015,34(2):384-394. ] | |
[20] | 柳林, 杜方叶, 肖露子 , 等. 不同类型道路密度对公共空间盗窃犯罪率的影响: 基于ZG市的实证研究 [J]. 人文地理, 2017,32(6):32-38, 46. |
[ Liu Lin, Du Fangye, Xiao Luzi , et al. The density of various road types and larceny rate: An empirical analysis of ZG City. Human Geography, 2017,32(6):32-38, 46. ] | |
[21] | Toomey T L, Erickson D J, Carlin B P , et al. The association between density of alcohol establishments and violent crime within urbanneighborhoods [J]. Alcoholism: Clinical & Experimental Research, 2012,36(8):1468-1473. |
[22] | Wang Z, Wu J, Yu B. Analyzing spatio-temporal distribution of crime hot-spots and their related factors in Shanghai, China[C]// 2011 19th International Conference on Geoinformatics. IEEE, 2011: 1-6. doi: 10.1109/GeoInformatics.2011.5981000. |
[23] | Nelson A L, Bromley R D F, Thomas C J. Identifying micro-spatial and temporal patterns of violent crime and disorder in the British city centre [J]. Applied Geography, 2001,21(3):249-274. |
[24] | 毛媛媛, 丁家骏 . 抢劫与抢夺犯罪行为时空分布特征研究: 以上海市浦东新区为例 [J]. 人文地理, 2014,29(1):49-54. |
[ Mao Yuanyuan, Ding Jiajun . Study on spatial-temporal patterns of robbery and snatch: A case study of Pudong New Area, Shanghai. Human Geography, 2014,29(1):49-54. ] | |
[25] | Ceccato V, Haining R . Short and medium term dynamics and their influence on acquisitive crime rates in the transition states of Estonia, Latvia and Lithuania [J]. Spatial Analysis, 2008,1(3):215-244. |
[26] | 赵丹丹 . 盗三车类案件时空分布特征及预测: 以上海市长宁区为例[D]. 开封: 河南大学, 2017. |
[ Zhao Dandan . The spatial-temporal distribution characteristics and crime prediction of three classes car stolen: Take Changning District in Shanghai as an example. Kaifeng,China: Henan University, 2017. ] | |
[27] | 徐嘉祥 . 基于环境犯罪学理论的入室盗窃时空分布研究: 以北京市主城区案件的分析为例 [J]. 人文地理, 2018,33(1):43-50. |
[ Xu Jiaxiang . Research on spatial-temporal distributions of burglary based on the environmental criminology: Based on analysis of crime in Beijing. Human Geography, 2018,33(1):43-50. ] | |
[28] | 陈鹏, 李欣, 胡啸峰 , 等. 北京市长安街沿线的扒窃案件高发区分析及防控对策 [J]. 地理科学进展, 2015,34(10):1250-1258. |
[ Chen Peng, Li Xin, Hu Xiaofeng , et al. Clustering pattern analysis and prevention strategies to pickpocketing offence along the Chang'an Street in Beijing. Progress in Geography, 2015,34(10):1250-1258. ] | |
[29] | 徐冲, 柳林, 周素红 , 等. 微观空间因素对街头抢劫影响的空间异质性: 以DP半岛为例 [J]. 地理研究, 2017,36(12):2492-2504. |
[ Xu Chong, Liu Lin, Zhou Suhong , et al. Spatial heterogeneity of micro-spatial factors' effects on street robberies: A case study of DP Peninsula. Geographical Research, 2017,36(12):2492-2504. ] | |
[30] | 程连生, 马丽 . 北京城市犯罪地理分析 [J]. 人文地理, 1997,12(2):7-12. |
[ Cheng Liansheng, Ma Li . Geographical analysis of urban crime in Beijing. Human Geography, 1997,12(2):7-12. ] | |
[31] | 刘大千, 宋伟, 修春亮 . 长春市“两抢两盗”犯罪的空间分析 [J]. 地理科学, 2014,34(11):1344-1352. |
[ Liu Daqian, Song Wei , XiuChunliang. Spatial analysis of the crime of "two robberies and two robbers" in Changchun. Scientia Geographica Sinica, 2014,34(11):1344-1352. ] | |
[32] | 柳林, 姜超, 周素红 , 等. 城市入室盗窃犯罪的多尺度时空格局分析: 基于中国H市DP半岛的案例研究 [J]. 地理研究, 2017,36(12):2451-2464. |
[ Liu Lin, Jiang Chao, Zhou Suhong , et al. Spatial-temporal patterns of burglary at multiple scales: The case of DP Peninsula in H City, China. Geographical Research, 2017,36(12):2451-2464. ] |
[1] | LONG Dongping, LIU Lin, CHEN Jianguo, XIAO Luzi, SONG Guangwen, XU Chong. Impact of prior crime experiences of street robbers on subsequent crime location choices [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 815-828. |
[2] | LIU ling, LI Gang, XUE Shuyan, MA Xueyao, ZHOU Junjun, XU Tingting, WANG Jiaobei. Spatiotemporal change and influencing factors of child trafficking crime in Sichuan Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 853-865. |
[3] | JIANG Chao, TANG Huanli, LIU Lin. Review of crime geography in China [J]. PROGRESS IN GEOGRAPHY, 2014, 33(4): 561-573. |
[4] | WANG Quanfang1, WANG Qian1, ZHANG Qipeng2, MEI Xin1 . Programming on Calculating Fractal Dimension of Land Use Types for 2D Vector Data [J]. PROGRESS IN GEOGRAPHY, 2010, 29(3): 259-265. |
|