[1] |
Liang X, Liang Y . Applications of data mining in hydrology[C]// Proceedings 2001 IEEE International Conference on Data Mining. San Jose, USA, 2001: 617-620.
|
[2] |
Kurtulus B, Razack M . Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy[J]. Journal of Hydrology, 2010,381(1):101-111.
doi: 10.1002/(sici)1096-9861(19970428)381:1<101::aid-cne8>3.0.co;2-5
pmid: 9087422
|
[3] |
Tiwari M K, Chatterjee C . A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting[J]. Journal of Hydroinformatics, 2011,13(3):500-519.
doi: 10.2166/hydro.2010.142
|
[4] |
赵铜铁钢, 杨大文 . 神经网络径流预报模型中基于互信息的预报因子选择方法[J]. 水力发电学报, 2011,30(1):24-30.
|
|
[ Zhao Tongtiegang, Yang Dawen . Mutual information-based input variable selection method for runoff-forecasting neural network model. Journal of Hydroelectric Engineering, 2011,30(1):24-30. ]
|
[5] |
刘柯 . 基于主成分分析的BP神经网络在城市建成区面积预测中的应用: 以北京市为例[J]. 地理科学进展, 2007,26(6):131-139.
|
|
[ Liu Ke . Application of BP Neural Network based on principal component analysis in urban area prediction: A case study of Beijing. Progress in Geography, 2007,26(6):131-139. ]
|
[6] |
李爱云, 张红霞 . 小波人工神经网络在径流预报中的应用[J]. 人民黄河, 2011(10):37-38, 41.
|
|
[ Li Aiyun, Zhang Hongxia . Wavelet neural network model and its application in runoff forecasting. Yellow River, 2011(10):37-38, 41. ]
|
[7] |
郭炅, 张艳军, 王俊勃 , 等. 长短期记忆模型在小流域洪水预报上的应用研究[J]. 水资源研究, 2019(1):24-32.
|
|
[ Guo Jiong, Zhang Yanjun, Wang Junbo , et al. Application of the long short-term memory networks for flood forecast. Journal of Water Resources Research, 2019(1):24-32. ]
|
[8] |
周研来, 郭生练, 张斐章 , 等. 人工智能在水文预报中的应用研究[J]. 水资源研究, 2019(1):1-12.
|
|
[ Zhou Yanlai, Guo Shenglian, Zhang Feizhang , et al. Hydrological forecasting using artificial intelligence techniques. Journal of Water Resources Research, 2019(1):1-12. ]
|
[9] |
Kratzert F, Klotz D, Brenner C , et al. Rainfall-runoff modelling using long short-term memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018,22(11):6005-6022.
doi: 10.5194/hess-22-6005-2018
|
[10] |
顾逸 . 基于长短期记忆循环神经网络及其结构约减变体的中长期径流预报研究[D]. 武汉: 华中科技大学, 2018.
|
|
[ Gu Yi . Medium and long-term runoff prediction based on long-term and short-term memory-cycle neural networks and their structural reductions. Wuhan, China: Huazhong University of Science and Technology, 2018. ]
|
[11] |
冯钧, 潘飞 . 一种LSTM-BP多模型组合水文预报方法[J]. 计算机与现代化, 2018(7):82-85.
|
|
[ Feng Jun, Pan Fei . A hydrologic forecast method based on LSTM-BP. Computer and Modernization, 2018(7):82-85. ]
|
[12] |
刘桐彤 . 基于长短期记忆神经网络的短期负荷预测方法[J]. 黑龙江科技信息, 2016(31):81.
|
|
[ Liu Tongtong . Short-term load forecasting method based on long-term and short-term memory neural network. Heilongjiang Science and Technology Information, 2016(31):81. ]
|
[13] |
刘炳春, 齐鑫, 王庆山 . 北京城市代谢预测研究: 基于长短期记忆神经网络模型[J]. 地理科学进展, 2019,38(6):851-860.
doi: 10.18306/dlkxjz.2019.06.006
|
|
[ Liu Bingchun, Qi Xin, Wang Qingshan . Urban metabolism prediction of Beijing City based on long short-term memory neural network. Progress in Geography, 2019,38(6):851-860. ]
doi: 10.18306/dlkxjz.2019.06.006
|
[14] |
晏臻, 于重重, 韩璐 , 等. 基于CNN+LSTM的短时交通流量预测方法[J]. 计算机工程与设计, 2019,40(9):2620-2624, 2659.
|
|
[ Yan Zhen, Yu Chongchong, Han Lu , et al. Short-term traffic flow prediction method based on CNN+LSTM. Computer Engineering and Design, 2019,40(9):2620-2624, 2659. ]
|
[15] |
陶晔, 杜景林 . 基于随机森林的长短期记忆网络气温预测[J]. 计算机工程与设计, 2019,40(3):144-150.
|
|
[ Tao Ye, Du Jinglin . Temperature prediction using long short term memory network based on random. Computer Engineering and Design, 2019,40(3):144-150. ]
|
[16] |
Guo J M, Markoni H . Driver drowsiness detection using hybrid convolutional neural network and long short-term memory[J]. Multimedia Tools and Applications, 2019,78(20):29059-29087.
doi: 10.1007/s11042-018-6378-6
|
[17] |
Hochreiter S, Schmidhuber J . Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[18] |
Ritter A, Muñoz-Carpena R . Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments[J]. Journal of Hydrology, 2013,480:33-45.
doi: 10.1016/j.jhydrol.2012.12.004
|