Please wait a minute...
PROGRESS IN GEOGRAPHY
 
Citation Search Quick Search DOI Advanced
PROGRESS IN GEOGRAPHY    2015, Vol. 34 Issue (4) : 410-417     DOI: 10.11820/dlkxjz.2015.04.002
Special Column: Big Data and Smart City |
Opportunities and limitations of big data applications to human and economic geography: the state of the art
Zhenshan YANG1*(),Ying LONG2,DOUAY Nicolas3
1. Key Lab of Regional Sustainable Development and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. Beijing Institute of City Planning, Beijing 100045, China
3. Université Paris Diderot, Paris 75205, France
Download: PDF(0 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The technology of "big data" has profoundly changed our life and society, and advanced scientific research. By taking social and human activities as main data source, this technology is of great potential of applications in human and economic geography. Drawing on recent progress in research, this article analyzes the new applications of big data to the research of urban hotspots, functional areas and boundaries, transportation and consumption behaviors and social geography. Based on these analyses, this article articulates the roles of big data in enriching data sources, adding new research themes, bringing new research paradigms, and stimulating the research of coupling to human-spatial research in human and economic geography. However, the technology of "big data" still needs improved, especially the "bias" issue in collection and the attributes of data. It also needs appropriately positioned in the application in human and economic geography because big data cannot replace the data that are collected from field work, or be applied without proper theoretical grounding and hypothesis, and replace the independent thinking of researchers and decision processes. These factors limit the application of big data, which requires more efforts on big data infrastructure development as well as exploration of human and economic geography. Acknowledging the opportunities and roles of big data application, human and economic geographers should emphasize the following to advance the research of this filed: exploring new data sources and paying closer attention to database construction inhuman and economic geography, establishing a research paradigm towards big data applications, facilitating cross-disciplinary and cross-domain research to strengthen the study of human-nature relations, and emphasizing the research towards human behaviors and demands.

Keywords big data      human and economic geography      research paradigms     
Issue Date: 04 June 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenshan YANG
Ying LONG
DOUAY Nicolas
Cite this article:   
Zhenshan YANG,Ying LONG,DOUAY Nicolas. Opportunities and limitations of big data applications to human and economic geography: the state of the art[J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 410-417.
URL:  
http://www.progressingeography.com/EN/10.11820/dlkxjz.2015.04.002     OR     http://www.progressingeography.com/EN/Y2015/V34/I4/410
1 贺灿飞, 郭琪, 马妍, 等. 2014. 西方经济地理学研究进展[J]. 地理学报, 69(8): 1207-1223. [He C F, Guo Q, Ma Y, et al.2014. Progress of economic geography in the West: a literature review[J]. Acta Geographica Sinica, 69(8): 1207-1223.]
2 刘卫东, 陆大道. 2004. 经济地理学研究进展[J]. 中国科学院院刊, 19(1): 35-39. [Liu W D, Lu D D. 2004. The development of economic geography in China: progress and suggestions[J]. Bulletin of the Chinese Academy of Sciences, 19(1): 35-39.]
url: http://d.wanfangdata.com.cn/Periodical_zgkxyyk200401009.aspx
3 龙瀛, 张宇, 崔承印. 2012. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 67(10): 1339-1352. [Long Y, Zhang Y, Cui C Y. 2012. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 67(10): 1339-1352.]
url: http://d.wanfangdata.com.cn/Periodical_dlxb201210005.aspx
4 苗长虹, 魏也华. 2007. 西方经济地理学理论建构的发展与论争[J]. 地理研究, 26(6): 1233-1246. [Miao C H, Wei Y H. 2007. Development and debates in the theoretical construction of economic geography[J]. Geographical Research, 26(6): 1233-1246.]
url: http://www.cqvip.com/Main/Detail.aspx?id=26007941
5 秦萧, 甄峰, 熊丽芳, 等. 2013. 大数据时代城市时空间行为研究方法[J]. 地理科学进展, 32(9): 1352-1451. [Qin X, Zhen F, Xiong L F, et al.2013. Methods in urban temporal and spatial behavior research in the big data era[J]. Progress in Geography, 32(9): 1352-1451.]
url: http://d.wanfangdata.com.cn/Periodical_dlkxjz201309005.aspx
6 宋长青, 冷疏影. 2004. 国家自然科学基金资助下的中国人文地理学发展[J]. 地理学报, 59(增刊1): 8-10. [Song C Q, Leng S Y. 2004. Features of recent human geography researches granted by National Natural Science Foundation of China[J]. Acta Geographica Sinica, 59(S1): 8-10.]
url: http://www.cnki.com.cn/Article/CJFDTotal-DLXB2004S1001.htm
7 王广斌, 范美燕, 王捷, 等. 2013. “智慧城市”背景下的城市规划创新[J]. 上海城市规划, (2): 11-14. [Wang G B, Fan M Y, Wang J, et al.2013. Innovation of urban planning against the background of 'smart city'[J]. Shanghai Urban Planning Review, (2): 11-14.]
url: http://www.cqvip.com/QK/83406X/201302/46746890.html
8 谢耘. 2012. 智慧城市的拼图模式[J/OL].2012-10[2015-03-25]. 智慧城市在中国,试刊号: 30-33.http://www.digitalchina.com/zhcszzg/zhcszzg.pdf. [Xie Y. 2012. Zhihui chengshi de pintu moshi[J/OL]. 2012-10[2015-03-25]. Smart City in China, Prototype Ed.: 30-33. http://www.digitalchina.com/zhcszzg/zhcszzg.pdf.
9 杨振山, 蔡建明. 2010. 空间统计学进展及其在经济地理研究中的应用[J]. 地理科学进展, 29(6): 757-768. [Yang Z S, Cai J M. 2010. Progress of spatial statistics and its application in economic geography[J]. Progress in Geography, 29(6): 757-768.]
url: http://www.cqvip.com/QK/96015A/201006/34250514.html
10 甄峰, 秦萧, 王波. 2014. 大数据时代的人文地理研究与应用实践[J]. 人文地理, 29(3): 1-6. [Zhen F, Qin X, Wang B. 2014. Human geography research and practical application in big data era[J]. Human Geography, 29(3): 1-6.]
url: http://www.cnki.com.cn/Article/CJFDTotal-RWDL201403002.htm
11 ABB, European House-Ambrosetti. 2012. Smart cities in Italy: an opportunity in the spirit of the renaissance for a new quality of life[R/OL]. http://www02.abb.com/db/db0003/db002698.nsf/0/af0569d84fa29925c1257a71004dc253/$file/SmartCitiesReport10Points.pdf.
12 Allwinkle S, Cruickshank P. 2011. Creating smarter cities: an overview[J]. Journal of Urban Technology, 18(2): 1-16.
13 Analytis P P, Moussaid M, Artinger F, et al.2014. "Big data" needs an analysis of decision processes[J]. Behavioral and Brain Sciences, 37(1): 76-78.
url: http://dx.doi.org/10.1017/S0140525X13001659
14 Anthopoulos L, Vakali A. 2012. Urban Planning andsmart cities:interrelations and reciprocities[M]. Berlin, Germany: Springer.
15 Baek H, Park S-K. 2015. Sustainable development plan for korea through expansion of green IT: policy issues for the effective utilization of big data[J]. Sustainability, 7(2): 1308-1328.
url: http://dx.doi.org/10.3390/su7021308
16 Barabasi A L. 2010. The hidden pattern behind everything we do[M]. Boston, MA: Dutton Books.
17 Batty M. 2012. Smart cities, big data[J]. Environment and Planning B, 39(2): 191-193.
url: http://dx.doi.org/10.1068/b3902ed
18 Bentley R A, O'brien M J, Brock W A. 2014. Mapping collective behavior in the big-data era[J]. Behavioral and Brain Sciences, 37(1): 63-76.
url: http://dx.doi.org/10.1017/S0140525X13000289
19 Boyd D, Crawford K. 2012. Critical questions for big data[J]. Information, Communication & Society, 15(5): 662-679.
20 Cai H, Jia X, Chiu A S F, et al.2014. Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet[J]. Transportation Research: Transport and Environment, 33: 39-46.
url: http://dx.doi.org/10.1016/j.trd.2014.09.003
21 Crain R, Cooper C, Dickinson J L. 2014. Citizen science: a tool for integrating studies of human and natural systems[J]. Annual Review of Environment and Resources, 39: 641-665.
url: http://dx.doi.org/10.1146/annurev-environ-030713-154609
22 Delyser D, Sui D. 2013. Crossing the qualitative- quantitative divide II: inventive approaches to big data, mobile methods, and rhythmanalysis[J]. Progress in Human Geography, 37(2): 293-305.
url: http://dx.doi.org/10.1177/0309132512444063
23 Ginsberg J, Mohebbi M H, Patel R S, et al.2009. Detecting influenza epidemics using search engine query data[J]. Nature, 457: 1012-1014.
url: http://dx.doi.org/10.1038/nature07634
24 Graham G, Mehmood R. 2014. The strategic prototype "crime-sourcing" and the science/science fiction behind it[J]. Technological Forecasting and Social Change, 84: 86-92.
url: http://dx.doi.org/10.1016/j.techfore.2013.10.026
25 Gray J, Szalay E 2007. Escience: a transformed scientific method[J/OL]. 2007-01-11[2015-03-25]. http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf.
26 Jiang B. 2015. Head/tail breaks for visualization of city structure and dynamics[J]. Cities, 43: 69-77.
url: http://dx.doi.org/10.1016/j.cities.2014.11.013
27 Jiang L, Deng X, Seto K C. 2012. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China[J]. Landscape and Urban Planning, 108(2-4): 131-139.
url: http://dx.doi.org/10.1016/j.landurbplan.2012.08.008
28 Jun S P, Park D H, Yeom J 2014. The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference[J]. Technological Forecasting and Social Change, 86: 237-253.
url: http://dx.doi.org/10.1016/j.techfore.2013.10.021
29 Laney D. 2001. 3D data management: controlling data volume, velocity, and variety[R]. Application Delivery Strategies,META Group.
30 Long Y, Han H, Tu Y, et al. 2014. Evaluating the effectiveness of urban growth boundaries using human mobility and activity records[R/OL]. 2014-01-04[2015-03-25]. http://www.beijingcitylab.com/working-papers-1/wp41-60/.
31 Long Y, Liu X. 2013. How mixed is Beijing, China: a visual exploration of mixed land use[J]. Environment and Planning A, 45(12): 2797-2798.
url: http://dx.doi.org/10.1068/a130162g
32 Long Y, Shen Y. 2014. Mapping parcel-level urban areas for a large geographical area[R]. ArXiv preprint arXiv, 2014a, 1403.5864.
33 Mayer-Schonberger V, Cukier K. 2013. Big data: a revolution that will transform how we live, work and think[M]. London, UK: John Murray Publishers.
34 Nelson A C, Duncan J B. 1995. Growth management principles and practices[M]. Chicago, IL: Planners Press.
35 Tan K C, Lim H S, Matjafri M Z, et al.2010. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia[J]. Environmental Earth Sciences, 60(7): 1509-1521.
url: http://dx.doi.org/10.1007/s12665-009-0286-z
36 Vitolo C, Elkhatib Y, Reusser D, et al.2015. Web technologies for environmental big data[J]. Environmental Modelling & Software, 63: 185-198.
37 Wang H, Kilmartin L 2014. Comparing rural and urban social and economic behavior in Uganda: insights from mobile voice service usage[J]. Journal of Urban Technology, 21(2): 61-89.
url: http://dx.doi.org/10.1080/10630732.2014.888296
38 Xiang Z, Schwartz Z, Gerdes J H, et al.2015. What can big data and text analytics tell us about hotel guest experience and satisfaction[J]. International Journal of Hospitality Management, 44: 120-130.
url: http://dx.doi.org/10.1016/j.ijhm.2014.10.013
39 Zhang Z, Zhou T, Zhang Y 2011. Tag-aware recommendersystems: a state-of-the-art survey[J]. Journal of Computer Science and Technology, 26(5): 767-777.
url: http://dx.doi.org/10.1007/s11390-011-0176-1
[1] Yang CAO,Feng ZHEN. The overall architecture of sustainable urban spatial development model based on the construction of smart cities[J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 430-437.
[2] Dianzhi SUI, Xinyue YE, Tian GAN. Open GIS for big data:opportunities and impediments[J]. PROGRESS IN GEOGRAPHY, 2014, 33(6): 723-737.
[3] Kai ZHOU,Fangfang QIAN,Yu ZOU. Visualizing time-space compression of urban system in Hunan Province:[J]. PROGRESS IN GEOGRAPHY, 2014, 33(12): 1666-1675.
[4] QIN Xiao, ZHEN Feng, XIONG Lifang, ZHU Shoujia. Methods in urban temporal and spatial behavior research in the Big Data Era[J]. PROGRESS IN GEOGRAPHY, 2013, 32(9): 1352-1361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

meinv

meinv

meinv

meinv

Copyright © PROGRESS IN GEOGRAPHY