[1] Scurlock J, Hall D. The global carbon sink: A grassland perspective. Global Change Biology, 1998,4(2):229-233.
[2] 于贵瑞, 李海涛, 王绍强. 全球变化与陆地生态系统碳循环和碳蓄积. 北京: 气象出版社, 2003, 182-183.
[3] 陈世苹, 白永飞, 韩兴国. 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报, 2002,26(5):549-560.
[4] 赵志祥, 格拉希维里, 帕塔尔肯, 等. 核素数据手册.3版. 北京: 原子能出版社, 2004, 6-7.
[5] 陈岳龙, 杨忠芳, 赵志丹. 同位素地质年代学与地球化学. 北京: 地质出版社, 2005, 183-185.
[6] De Camargo P, Trumbore S, Martinelli L, et al. Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 1999,5(6):693-702.
[7] Del Galdo I, Six J, Peressltti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 2003,9(8):1204-1213.
[8] 武维华, 张蜀秋, 袁明, 等. 植物生理学. 北京: 科学出版社, 2003, 150-161.
[9] Bernoux M, Cerri C C, Neil C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma, 1998,82:43-58.
[10] Dzurec R S, Boutton T W, Caldwell M M, et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah. Oecologia, 1985,66:17-24.
[11] Kingston J D, Marino B D, Hill A. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley. Science, 1984,264:955-959.
[12] 刘启明, 王世杰, 朴河春,等. 生态转换系统中土壤有机质变化的稳定碳同位素示踪研究进展. 生态学杂志, 2002, 21(2):58-60.
[13] Bashkin M A, Binkley D. Changes in soil carbon following afforestation in Hawaii. Ecology, 1998,79(3):828-833.
[14] Schwendenmann L, Pendall E. Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plant and Soil, 2006,288(1):217-232.
[15] Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance. Journal of Plant Nutrition and Soil Science, 2000,163(2):157-163.
[16] 王智平, 陈全胜. 植物近期光合碳分配及转化. 植物生态学报, 2005,29(5):845-850.
[17] Wang Z P, Li L H, Han X G, et al. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental and Experimental Botany, 2007,59:1-10.
[18] Yevdokimov I, Ruser R, Buegger F, et al. Microbial immobilisation of 13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats. Soil Biology and Biochemistry, 2006,38(6):1202-1211.
[19] Ostle N, Briones M J I, Ineson P, et al. Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biology and Biochemistry, 2007,39(3):768-777.
[20] Stewart D P C, Metherell A K. Carbon (13C) uptake and allocation in pasture plants following field pulse-labelling. Plant and Soil, 1999,210(1):61-73.
[21] 朱书法, 刘丛强, 陶发祥. δ13C方法在土壤有机质研究中的应用. 土壤学报, 2005,42(3):495-503.
[22] Foereid B, Dawson L, Johnson D, et al. Fate of carbon in upland grassland subjected to liming using in situ 13CO2 pulse-labelling. Plant and Soil, 2006,287(1):301-311.
[23] Pendall E, King JY. Soil organic matter dynamics in grassland soils under elevated CO2: Insights from long-term incubations and stable isotopes. Soil Biology and Biochemistry, 2007,39(10):2628-2639.
[24] 李玲, 肖和艾, 黄道友, 等. 14C示踪技术在土壤有机质周转研究中的应用. 生态学杂志, 2005,24(6):685-690.
[25] 方精云, 王娓. 作为地下过程的土壤呼吸:我们理解了多少?植物生态学报, 2007,31(3):345-347.
[26] 刘绍辉, 方精云, 清田信. 北京山地温带森林的土壤呼吸. 植物生态学报, 1998,22(2):119-126.
[27] Oomes M J M, Kuikman P J, Jacobs F H H. Nitrogen availability and uptake by grassland in mesocosms at two water levels and two water qualities. Plant and Soil, 1997,192(2):249-259.
[28] Kucera C, Kirkham D. Soil respiration studies in tallgrass prairie in Missouri. Ecology, 1971,52(5):912-915.
[29] Singh J, Gupta S. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 1977,43(4):449-528.
[30] 常宗强, 史作民, 冯起,等. 黑河流域山区牧坡草地土壤呼吸的时间变化及水热因子影响. 应用生态学报, 2005,16(9):1603-1606.
[31] 陈全胜, 李凌浩, 韩兴国,等. 水热条件对锡林河流域典型草原退化群落土壤呼吸的影响. 植物生态学报, 2003,27(2):202-209.
[32] Andrews J A, Matamala R, Westover K M, et al. Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biology and Biochemistry, 2000,32(5):699-706.
[33] Dudziak A, Halas S. Diurnal cycle of carbon isotope ratio in soil CO2 in various ecosystems. Plant and Soil, 1996,183(2):291-299.
[34] 刘洪升, 刘华杰, 王智平, 等. 土壤呼吸的温度敏感性. 地理科学进展, 2008,27(4):51-60.
[35] Bowling D R, McDowell N G, Bond B J, et al. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia, 2002,131(1):113-124.
[36] Fessenden J E, Ehleringer J R. Temporal variation in δ13C of ecosystem respiration in the Pacific Northwest: Links to moisture stress. Oecologia, 2003,136(1):129-136.
[37] Wang Y, Amundson R, Niu XF. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochemical Cycles, 2000,14:199-211.
[38] 孙伟, David W. 利用稳定性同位素区分河岸C4草地生态系统夜晚碳通量. 湿地科学, 2008,6(2):271-277.
[39] 崔玉亭, 卢进登. 集约高产农业生态系统有机物分解及土壤呼吸动态研究. 应用生态学报, 1997,8(1):59-64.
[40] Cheng W X. Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant and Soil, 1996,183(2):263-268.
[41] Robinson D, Scrimgeour C M. The contribution of plant C to soil CO2 measured using δ13C. Soil Biology and Biochemistry, 1995,27(12):1653-1656.
[42] Rochette P, Flanagan L B, Gregorich E G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of America Journal, 1999,63(5):1207-1213.
[43] Cerling T, Solomon D, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 1991,55(11):3403-3405.
[44] Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration:A review of methods and observations. Biogeochemistry, 2000,48:115-146.
[45] Gaudinski J B, Trumbore S E, Davidson E A, et al. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 2000,51(1):33-69.
[46] S?尴e A R B, Giesemann A, Anderson T-H, et al. Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant and Soil, 2004,262(1):85-94.
[47] 崔向慧, 李昊, 卢琦,等. 全球FACE实验的进展与展望. 世界林业研究, 2007,20(5):1-6.
[48] Killham K, Yeomans C. Rhizosphere carbon flow measurement and implications: from isotopes to reporter genes. Plant and Soil, 2001,232(1):91-96.
[49] Johansson G. Release of organic C from growing roots of meadow fescue(Festuca pratensis L.). Soil Biology and Biochemistry, 1992,24(5):427-433.
[50] Cheng W, Coleman D, Carroll C, et al. In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology and Biochemistry, 1993,25(9):1189-1196.
[51] Swinnen J. Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil. Plant and Soil, 1994,165(1):89-101.
[52] Kuzyakov Y, Domanski G. Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labelling of ryegrass. Plant and Soil, 2002,239(1):87-102.
[53] Yakov Kuzyakov, Siniakina S V. A novel method for separating root-derived organic compounds from root respiration in non-sterilized soils. Journal of Plant Nutrition and Soil Science, 2001,164:511-517.
[54] Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 2006,38(3):425-448.
[55] Kuzyakov Y, Bol R. Using natural 13C abundances to differentiate between three CO2 sources during incubation of a grassland soil amended with slurry and sugar. Journal of Plant Nutrition and Soil Science, 2004,167(6):669-677.
[56] Kuzyakov Y. Theoretical background for partitioning of root and rhizomicrobial respiration by δ13C of microbial biomass. European Journal of Soil Biology, 2005,41(1-2):1-9.
[57] Werth M, Subbotina I, Kuzyakov Y. Three-source partitioning of CO2 efflux from soil planted with maize by 13C natural abundance fails due to inactive microbial biomass. Soil Biology and Biochemistry, 2006,38(9):2772-2781.
[58] Santruckova H, Bird M I, Lloyd J. Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Functional Ecology, 2000,14(1):108-114.
|