PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (5): 821-836.doi: 10.18306/dlkxjz.2023.05.001
• Articles • Next Articles
QI Honggang1(), QI Wei2, LIU Zhen2, ZHAO Meifeng1,*(
)
Received:
2022-09-19
Revised:
2022-11-10
Online:
2023-05-28
Published:
2023-05-24
Contact:
ZHAO Meifeng
E-mail:qihg192@163.com;zhaomeifeng@foxmail.com
Supported by:
QI Honggang, QI Wei, LIU Zhen, ZHAO Meifeng. Heterogeneity of educational attainment of talents in China: Spatial and temporal patterns and driving factors[J].PROGRESS IN GEOGRAPHY, 2023, 42(5): 821-836.
Tab.1
Description of the explanatory variables
类型 | 变量 | 描述 |
---|---|---|
经济因素 | tez | 各城市第三产业增加值占GDP的比重(%) |
wag | 各城市城镇在岗职工平均工资(元) | |
社会舒适性因素 | sta | 各城市中学生师比(人/人) |
doc | 各城市每万人执业医生数(人/万人) | |
roa | 各城市市辖区人均道路面积(m2/人) | |
自然环境舒适性因素 | gre | 各城市市辖区建成区绿化覆盖率(%) |
pm | 各城市年均PM2.5浓度(μg/m3) | |
dem | 各城市海拔高度(m) | |
控制变量 | edu | 各城市万人高等院校在校生数(人/万人) |
sef | 各城市财政支出中的科技支出和教育支出占比(%) | |
den | 各城市人口密度(人/km2) |
Tab.2
Global Moran's I of percentage of labor force with different educational attainments
指标 | 2005年 | 2010年 | 2015年 | |||||
---|---|---|---|---|---|---|---|---|
Moran's I | Z值 | Moran's I | Z值 | Moran's I | Z值 | |||
研究生学历劳动力占比 | -0.009 | -0.243 | 0.002 | 0.243 | 0.006 | 0.406 | ||
本科学历劳动力占比 | 0.170*** | 6.960 | 0.140*** | 5.808 | 0.138*** | 5.556 | ||
大专学历劳动力占比 | 0.312*** | 12.322 | 0.226*** | 8.888 | 0.143*** | 5.622 |
Tab.3
Regression results
变量 | 研究生 | 本科 | 大专 | ||||||
---|---|---|---|---|---|---|---|---|---|
OLS | SAR | SEM | OLS | SAR | SEM | OLS | SAR | SEM | |
tez | 0.529*** | 0.529*** | 0.533*** | 0.253*** | 0.247*** | 0.270*** | 0.141*** | 0.137*** | 0.156*** |
(4.439) | (4.451) | (4.452) | (3.788) | (3.719) | (4.028) | (2.841) | (2.778) | (3.149) | |
wag | 0.607*** | 0.605*** | 0.701*** | 0.476*** | 0.468*** | 0.557*** | 0.160*** | 0.160*** | 0.220*** |
-4.884 | (4.775) | (5.426) | (6.834) | (6.671) | (7.637) | (3.093) | (3.112) | (4.074) | |
sta | -0.309** | -0.306** | -0.276** | -0.256*** | -0.222*** | -0.221*** | -0.122** | -0.103* | -0.132** |
(-2.291) | (-2.251) | (-2.003) | (-3.385) | (-2.915) | (-2.854) | (-2.165) | (-1.827) | (-2.314) | |
doc | 0.340*** | 0.339*** | 0.337*** | 0.211*** | 0.207*** | 0.221*** | 0.199*** | 0.192*** | 0.197*** |
(4.084) | (4.090) | (4.035) | (4.526) | (4.482) | (4.728) | (5.730) | (5.572) | (5.696) | |
roa | 0.194*** | 0.194*** | 0.198*** | 0.175*** | 0.172*** | 0.176*** | 0.156*** | 0.153*** | 0.157*** |
(4.657) | (4.670) | (4.776) | (7.458) | (7.388) | (7.630) | (8.964) | (8.883) | (9.217) | |
gre | -0.064 | -0.064 | -0.07 | 0.009 | 0.007 | 0.005 | -0.029 | -0.031 | -0.035 |
(-1.025) | (-1.035) | (-1.132) | (0.259) | (0.197) | (0.156) | (-1.112) | (-1.201) | (-1.383) | |
pm | -0.006 | -0.006 | -0.024 | -0.116*** | -0.103** | -0.127*** | -0.075** | -0.062** | -0.077** |
(-0.079) | (-0.082) | (-0.300) | (-2.807) | (-2.480) | (-2.757) | (-2.426) | (-1.997) | (-2.224) | |
dem | 0.022 | 0.023 | 0.021 | -0.005 | 0.004 | -0.004 | 0.002 | 0.008 | 0.0001 |
(1.013) | (1.001) | (0.900) | (-0.449) | (0.280) | (-0.279) | (0.276) | (0.862) | (-0.005) | |
edu | 0.525*** | 0.525*** | 0.516*** | 0.223*** | 0.223*** | 0.206*** | 0.122*** | 0.123*** | 0.112*** |
-16.195 | (16.189) | (15.955) | (12.274) | (12.317) | (11.387) | (9.058) | (9.153) | (8.449) | |
sef | -0.407*** | -0.407*** | -0.380*** | -0.193*** | -0.190*** | -0.183*** | -0.124*** | -0.127*** | -0.148*** |
(-3.973) | (-3.992) | (-3.610) | (-3.351) | (-3.332) | (-3.085) | (-2.897) | (-2.986) | (-3.375) | |
den | 0.037 | 0.038 | 0.052 | -0.088*** | -0.078*** | -0.074*** | -0.097*** | -0.089*** | -0.093*** |
(0.867) | (0.885) | (1.181) | (-3.658) | (-3.217) | (-2.962) | (-5.412) | (-4.968) | (-5.033) | |
ρ | 0.022 | 0.315** | 0.370*** | ||||||
(0.112) | (2.195) | (2.780) | |||||||
γ | 0.584*** | 0.727*** | 0.830*** | ||||||
(3.881) | (6.972) | (12.399) | |||||||
R2 | 0.732 | 0.736 | 0.735 | 0.738 | 0.740 | 0.741 | 0.688 | 0.687 | 0.691 |
Log-likelihood | -658.406 | -658.404 | -655.316 | -243.436 | -241.965 | -237.592 | -30.916 | -29.519 | -18.921 |
Durbin-Watson | 1.651 | 1.598 | 1.471 | ||||||
LM(lag) | 0.011 | 3.528* | 2.766* | ||||||
R-LM(lag) | 5.505** | 0.118 | 5.760** | ||||||
LM(error) | 6.407** | 12.380*** | 33.041*** | ||||||
R-LM(error) | 11.901*** | 8.970*** | 36.035*** | ||||||
N | 717 | 717 | 717 |
[1] | 陈新明, 萧鸣政, 张睿超. 城市“抢人大战”的政策特征、效力测度及优化建议[J]. 中国人力资源开发, 2020, 37(5): 59-69. |
[Chen Xinming, Xiao Mingzheng, Zhang Ruichao. Policy features, effectiveness measurements and optimization suggestions of the city's "talent competition". Human Resources Development of China, 2020, 37(5): 59-69.] | |
[2] | 柴浩放. 城市“引才大战”的内在逻辑与效应[J]. 管理观察, 2018(28): 114-117. |
[Chai Haofang. The inner logic and effect of the city's attracting talent competition. Management Observer, 2018(28): 114-117.] | |
[3] | 李中斌, 涂满章, 赵聪. 我国城市人才争夺战的比较与思考[J]. 中国劳动关系学院学报, 2018, 32(4): 32-41. |
[Li Zhongbin, Tu Manzhang, Zhao Cong. A comparison of the wars for talents among the cities in China and some reflections. Journal of China University of Labor Relations, 2018, 32(4): 32-41.] | |
[4] | 刘宏. 如何制定全面的人才政策[N]. 社会科学报, 2018-08-30(3). |
[Liu Hong. How to formulate a comprehensive talent policy. Social Sciences Weekly, 2018-08-30(3).] | |
[5] | 杨吉元, 黄丽, 刘鎏, 等. 中小城市人才引进策略研究[J]. 价值工程, 2018, 37(27): 85-87. |
[Yang Jiyuan, Huang Li, et al. Research on talent introduction strategies in small and medium-sized cities. Value Engineering, 2018, 37(27): 85-87.] | |
[6] | 赵国钦, 张战, 沈展西, 等. 新一轮“人才争夺战”的工具导向和价值反思: 基于政策文本分析的视角[J]. 中国人力资源开发, 2018, 35(6): 75-84. |
[Zhao Guoqin, Zhang Zhan, Shen Zhanxi, et al. Instrumental orientation and value reflection in new round of "talents war": Under the perspective of policy text analysis. Human Resources Development of China, 2018, 35(6): 75-84.] | |
[7] |
Sjaastad L A. The costs and returns of human migration[J]. Journal of Political Economy, 1962, 70: 80-93.
doi: 10.1086/258726 |
[8] |
Nifo A, Vecchione G. Do institutions play a role in skilled migration? The case of Italy[J]. Regional Studies, 2014, 48(10): 1628-1649.
doi: 10.1080/00343404.2013.835799 |
[9] |
Liu Y, Shen J. Spatial patterns and determinants of skilled internal migration in China, 2000-2005[J]. Papers in Regional Science, 2014, 93(4): 749-771.
doi: 10.1111/pirs.12014 |
[10] |
Liu Y, Shen J. Jobs or amenities? Location choices of interprovincial skilled migrants in China, 2000-2005[J]. Population, Space and Place, 2014, 20(7): 592-605.
doi: 10.1002/psp.1803 |
[11] |
Graves P E. A reexamination of migration, economic opportunity, and the quality of life[J]. Journal of Regional Science, 1976, 16(1): 107-112.
doi: 10.1111/jors.1976.16.issue-1 |
[12] |
Graves P E, Linneman P D. Household migration: Theoretical and empirical results[J]. Journal of Urban Economics, 1979, 6(3): 383-404.
pmid: 12310565 |
[13] |
Rao Y X, Dai D Y. Creative class concentrations in Shanghai, China: What is the role of neighborhood social tolerance and life quality supportive conditions?[J]. Social Indicators Research, 2017, 132(3): 1237-1246.
doi: 10.1007/s11205-016-1347-9 |
[14] |
You H Y, Bie C M. Creative class agglomeration across time and space in knowledge city: Determinants and their relative importance[J]. Habitat International, 2017, 60: 91-100.
doi: 10.1016/j.habitatint.2016.12.010 |
[15] |
Murphy E, Redmond D. The role of 'hard' and 'soft' factors for accommodating creative knowledge: Insights from Dublin's 'creative class'[J]. Irish Geography, 2009, 42(1): 69-84.
doi: 10.1080/00750770902815620 |
[16] |
Navarro C J, Mateos C, Rodríguez M J. Cultural scenes, the creative class and development in Spanish municipalities[J]. European Urban and Regional Studies, 2014, 21(3): 301-317.
doi: 10.1177/0969776412448188 |
[17] | Florida R. The rise of the creative class[M]. New York, USA: Basic Books, 2002. |
[18] | Moretti E. The new geography of jobs[M]. Boston, USA: Houghton Mifflin Harcourt, 2012. |
[19] |
Scott A J. Jobs or amenities? Destination choices of migrant engineers in the USA[J]. Papers in Regional Science, 2010, 89(1): 43-63.
doi: 10.1111/pirs.2010.89.issue-1 |
[20] |
Verdich M. Creative migration? The attraction and retention of the 'creative class' in Launceston, Tasmania[J]. Australian Geographer, 2010, 41(1): 129-140.
doi: 10.1080/00049180903535642 |
[21] |
Shen J F, Liu Y. Skilled and less-skilled interregional migration in China: A comparative analysis of spatial patterns and the decision to migrate in 2000-2005[J]. Habitat International, 2016, 57: 1-10. doi: 10.1016/j.habitatint.2016.06.007.
doi: 10.1016/j.habitatint.2016.06.007 |
[22] |
McLeman R, Moniruzzaman M, Akter N. Environmental influences on skilled worker migration from Bangladesh to Canada[J]. The Canadian Geographer, 2018, 62(3): 352-371.
doi: 10.1111/cag.v62.3 |
[23] | Birdsall N, Londoño J L. Asset inequality matters: An assessment of the World Bank's approach to poverty reduction[J]. The American Economic Review, 1997, 87(2): 32-37. |
[24] | 张楠, 范洪敏, 穆怀中. 人力资本梯度升级的经济增长效应[J]. 人口与经济, 2020(2): 87-101. |
[Zhang Nan, Fan Hongmin, Mu Huaizhong. The analysis of economic growth based on structural upgrade of human capital. Population & Economics, 2020(2): 87-101.] | |
[25] | 袁富华, 张平, 陆明涛. 长期经济增长过程中的人力资本结构: 兼论中国人力资本梯度升级问题[J]. 经济学动态, 2015(5): 11-21. |
[Yuan Fuhua, Zhang Ping, Lu Mingtao. The structure of human capital in the long-term economic growth: Also on the gradient upgrading of human capital in China. Economic Perspectives, 2015(5): 11-21.] | |
[26] | 方超, 罗英姿. 人力资本梯度升级视野下的我国研究生教育供给侧改革[J]. 清华大学教育研究, 2016, 37(5): 68-77. |
[Fang Chao, Luo Yingzi. Reform of the supply side of China's graduate level of education: From the perspective of the gradient of human capital. Tsinghua Journal of Education, 2016, 37(5): 68-77.] | |
[27] |
古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340.
doi: 10.11821/dlxb202102006 |
[Gu Hengyu, Shen Tiyan. Spatial evolution characteristics and driving forces of Chinese highly educated talents. Acta Geographica Sinica, 2021, 76(2): 326-340.]
doi: 10.11821/dlxb202102006 |
|
[28] |
古恒宇, 沈体雁. 1995—2015年中国省际人口迁移网络的演化特征: 基于异质性劳动力视角[J]. 地理研究, 2021, 40(6): 1823-1839.
doi: 10.11821/dlyj020200507 |
[Gu Hengyu, Shen Tiyan. Evolution patterns of China's interprovincial migration networks between 1995 and 2015: Based on labour heterogeneity. Geographical Research, 2021, 40(6): 1823-1839.]
doi: 10.11821/dlyj020200507 |
|
[29] |
武荣伟, 王若宇, 刘晔, 等. 2000—2015年中国高学历人才分布格局及其影响机制[J]. 地理科学, 2020, 40(11): 1822-1830.
doi: 10.13249/j.cnki.sgs.2020.11.007 |
[Wu Rongwei, Wang Ruoyu, Liu Ye, et al. Spatial pattern and determinants of highly educated talents in China, 2000-2015. Scientia Geographica Sinica, 2020, 40(11): 1822-1830.]
doi: 10.13249/j.cnki.sgs.2020.11.007 |
|
[30] |
齐宏纲, 赵美风, 刘盛和, 等. 2000—2015年中国高学历人才省际迁移的演化格局及影响机理[J]. 地理研究, 2022, 41(2): 456-479.
doi: 10.11821/dlyj020201191 |
[Qi Honggang, Zhao Meifeng, Liu Shenghe, et al. Evolution pattern and its driving forces of China's interprovincial migration of highly-educated talents from 2000 to 2015. Geographical Research, 2022, 41(2): 456-479.]
doi: 10.11821/dlyj020201191 |
|
[31] |
Florida R, Mellander C, Stolarick K. Inside the black box of regional development: Human capital, the creative class and tolerance[J]. Journal of Economic Geography, 2008, 8(5): 615-649.
doi: 10.1093/jeg/lbn023 |
[32] |
Qian H F. Talent, creativity and regional economic performance: The case of China[J]. The Annals of Regional Science, 2010, 45(1): 133-156.
doi: 10.1007/s00168-008-0282-3 |
[33] |
齐宏纲, 戚伟, 刘盛和. 粤港澳大湾区人才集聚的演化格局及影响因素[J]. 地理研究, 2020, 39(9): 2000-2014.
doi: 10.11821/dlyj020200575 |
[Qi Honggang, Qi Wei, Liu Shenghe. Talents concentration in the Guangdong-Hong Kong-Macao Greater Bay Area, China: Evolution pattern and driving factors. Geographical Research, 2020, 39(9): 2000-2014.]
doi: 10.11821/dlyj020200575 |
|
[34] |
McGranahan D, Wojan T. Recasting the creative class to examine growth processes in rural and urban counties[J]. Regional Studies, 2007, 41(2): 197-216.
doi: 10.1080/00343400600928285 |
[35] |
刘晔, 王若宇, 薛德升, 等. 中国高技能劳动力与一般劳动力的空间分布格局及其影响因素[J]. 地理研究, 2019, 38(8): 1949-1964.
doi: 10.11821/dlyj020180391 |
[Liu Ye, Wang Ruoyu, Xue Desheng, et al. The spatial pattern and determinants of skilled laborers and lessskilled laborers in China: Evidence from 2000 and2010 censuses. Geographical Research, 2019, 38(8): 1949-1964.] | |
[36] | Anselin L. Spatial econometrics: Methods and models[M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1988. |
[37] |
Anselin L, Bera A K, Florax R, et al. Simple diagnostic tests for spatial dependence[J]. Regional Science and Urban Economics, 1996, 26(1): 77-104.
doi: 10.1016/0166-0462(95)02111-6 |
[38] | 曹威麟, 姚静静, 余玲玲, 等. 我国人才集聚与三次产业集聚关系研究[J]. 科研管理, 2015, 36(12): 172-179. |
[Cao Weilin, Yao Jingjing, Yu Lingling, et al. The research on the relationship between talent agglomeration and industrial agglomeration in China. Science Research Management, 2015, 36(12): 172-179.] | |
[39] |
刘涛, 彭荣熙, 卓云霞, 等. 2000—2020年中国人口分布格局演变及影响因素[J]. 地理学报, 2022, 77(2): 381-394.
doi: 10.11821/dlxb202202008 |
[Liu Tao, Peng Rongxi, Zhuo Yunxia, et al. China's changing population distribution and influencing factors: Insights from the 2020 census data. Acta Geographica Sinica, 2022, 77(2): 381-394.]
doi: 10.11821/dlxb202202008 |
|
[40] |
赵美风, 汪德根. 中国中西部地区就近城镇化空间分异格局及机理[J]. 地理学报, 2021, 76(12): 2993-3011.
doi: 10.11821/dlxb202112009 |
[Zhao Meifeng, Wang Degen. Spatial differentiation and influencing mechanism of nearby urbanization in central and western China. Acta Geographica Sinica, 2021, 76(12): 2993-3011.]
doi: 10.11821/dlxb202112009 |
|
[41] |
闫东升, 孙伟, 王玥, 等. 长江三角洲人口分布演变、偏移增长及影响因素[J]. 地理科学进展, 2020, 39(12): 2068-2082.
doi: 10.18306/dlkxjz.2020.12.009 |
[Yan Dongsheng, Sun Wei, Wang Yue, et al. Change in distribution and growth shifts of population in the Yangtze River Delta and influencing factors. Progress in Geography, 2020, 39(12): 2068-2082.]
doi: 10.18306/dlkxjz.2020.12.009 |
|
[42] |
陈镘, 黄柏石, 刘晔. PM2.5污染对中国人口死亡率的影响: 基于346个城市面板数据的实证分析[J]. 地理科学进展, 2022, 41(6): 1028-1040.
doi: 10.18306/dlkxjz.2022.06.007 |
[Chen Man, Huang Baishi, Liu Ye. Effects of PM2.5 concentration on mortality in China: A study based on city-level panel data. Progress in Geography, 2022, 41(6): 1028-1040.] | |
[43] |
李广东, 方创琳. 中国县域国土空间集约利用计量测度与影响机理[J]. 地理学报, 2014, 69(12): 1739-1752.
doi: 10.11821/dlxb201412001 |
[Li Guangdong, Fang Chuanglin. Quantitative measure and influencing mechanism of land intensive use in China at the county level. Acta Geographica Sinica, 2014, 69(12): 1739-1752.]
doi: 10.11821/dlxb201412001 |
|
[44] |
李广东, 戚伟. 中国建设用地扩张对景观格局演化的影响[J]. 地理学报, 2019, 74(12): 2572-2591.
doi: 10.11821/dlxb201912011 |
[Li Guangdong, Qi Wei. Impacts of construction land expansion on landscape pattern evolution in China. Acta Geographica Sinica, 2019, 74(12): 2572-2591.]
doi: 10.11821/dlxb201912011 |
|
[45] | 魏后凯, 高春亮. 中国区域协调发展态势与政策调整思路[J]. 河南社会科学, 2012, 20(1): 73-81, 107-108. |
[Wei Houkai, Gao Chunliang. China's trends in regional coordinated development and ideas on policy adjustment. Henan Social Sciences, 2012, 20(1): 73-81, 107-108.] | |
[46] | 覃成林, 郑云峰, 张华. 我国区域经济协调发展的趋势及特征分析[J]. 经济地理, 2013, 33(1): 9-14. |
[Qin Chenglin, Zheng Yunfeng, Zhang Hua. A study on the tendencies and features of the coordinated development of regional economy in China. Economic Geography, 2013, 33(1): 9-14.] | |
[47] | 刘旭阳, 金牛. 城市“抢人大战”政策再定位: 聚焦青年流动人才的分析[J]. 中国青年研究, 2019(9): 47-53. |
[Liu Xuyang, Jin Niu. Re-orientation of the policy of robbing people to fight in city: An analysis of focusing on young floating talents. China Youth Study, 2019(9): 47-53.] | |
[48] |
王少剑, 高爽, 陈静. 基于GWR模型的中国城市雾霾污染影响因素的空间异质性研究[J]. 地理研究, 2020, 39(3): 651-668.
doi: 10.11821/dlyj020181389 |
[Wang Shaojian, Gao Shuang, Chen Jing. Spatial heterogeneity of driving factors of urban haze pollution in China based on GWR model. Geographical Research, 2020, 39(3): 651-668.]
doi: 10.11821/dlyj020181389 |
|
[49] | 付强, 邱永辉. 中美房价比较分析: 基于Numbeo国际房价统计数据库的实证研究[J]. 中国房地产, 2019(12): 10-19. |
[Fu Qiang, Qiu Yonghui. A comparative analysis of house prices between China and America: An empirical study based on Numbeo international house price statistics database. China Real Estate, 2019(12): 10-19.] | |
[50] | 曹倪娜. 2014年全国35个大中城市房价收入比排行榜[J]. 上海房地, 2015(8): 10-12. |
[Cao Nina. Rankings of house price-income ratio in 35 large and medium-sized cities in China in 2014. Shanghai Real Estate, 2015(8): 10-12.] |
[1] | JIANG Haibing, LI Yejin. Change of spatial structure of manufacturing industry in the Beijing-Tianjin-Hebei region and its driving factors [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 721-735. |
[2] | Yaolin LIU, Yang ZHANG, Yan ZHANG, Yi LIU, Haofeng WANG, Yanfang LIU. Conflicts between three land management red lines in Wuhan City: Spatial patterns and driving factors [J]. PROGRESS IN GEOGRAPHY, 2018, 37(12): 1672-1681. |
[3] | rrJiangbin YIN. Advances in research on driving factors of return migration and employment behavior of migrants [J]. PROGRESS IN GEOGRAPHY, 2015, 34(9): 1084-1095. |
[4] | NIU Pinyi, LU Yuqi, PENG Qian. Driving factors of urbanization in Jiangsu Province based on quantile regression [J]. PROGRESS IN GEOGRAPHY, 2013, 32(3): 372-380. |
[5] | MAO Xiaogang, SONG Jinping, YANG Hongyan, ZHAO Qian. Changes of the Spatial Pattern of Beijing City Parks from 2000 to 2010 [J]. PROGRESS IN GEOGRAPHY, 2012, 31(10): 1295-1306. |
[6] | GE Yuejing, WANG Jingai, YANG Shengtian, ZHU Liang, LIU Baoyuan. Construction and Practice of Training System on Scientific Research for Undergraduates in Geography Study [J]. PROGRESS IN GEOGRAPHY, 2010, 29(5): 633-637. |
[7] | WU Xiaoxu, ZOU Xueyong. Research on Land Use Change of Uxin Qi [J]. PROGRESS IN GEOGRAPHY, 2009, 28(2): 199-206. |
[8] | ZHEN Jianghong|WANG Yongxiu|CHENG Shun|BAO Ligao. Landscape Dynamics and Driving Factors of Endangered Plant Tetraene mongolica's Habitats [J]. PROGRESS IN GEOGRAPHY, 2008, 27(6): 41-48. |
[9] | ZHANG Baohua, GU Yanfang, DING Shengyan, LIANG Guofu. Research Development on Driving Factors and Ecological Effects of Agriculture Landscape Pattern Change [J]. PROGRESS IN GEOGRAPHY, 2007, 26(1): 114-122. |
[10] | ZHANG Yushu, WANG Lixin, ZHANG Hongqi, LI Xiangyun . An Analysis on Land Use Changes and Their Driving Factors in Shule River:an Exam ple From Anxi County [J]. PROGRESS IN GEOGRAPHY, 2003, 22(3): 270-278. |
|