PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (4): 766-781.doi: 10.18306/dlkxjz.2023.04.012
• Articles • Previous Articles Next Articles
Received:
2022-09-20
Revised:
2022-11-06
Online:
2023-04-28
Published:
2023-04-27
Supported by:
TAO Zexing, DAI Junhu. Variations in spring leaf phenology and leaf freezing damage of common woody species in China[J].PROGRESS IN GEOGRAPHY, 2023, 42(4): 766-781.
Tab.1
Summary information of the species investigated in this study
物种名 | 拉丁名 | 站点数量/个 | 观测站点 | 记录数量/条 | 平均展叶始期(序日) | 无分布省份 |
---|---|---|---|---|---|---|
榆树 | Ulmus pumila | 53 | 蚌埠、保定、北安、北京、承德、贵阳、哈尔滨、汉中、杭州、合肥、呼和浩特、呼玛、虎林、黄山、霍山、鸡西、济南、佳木斯、酒泉、昆明、拉萨、民勤、牡丹江、南昌、南充、南京、嫩江、齐齐哈尔、秦皇岛、沈阳、石家庄、太原、天津、潍坊、乌鲁木齐、乌苏、武功、西安、西宁、锡林浩特、邢台、熊岳、徐州、延安、伊春、宜昌、银川、鄞县、榆林、原平、张家口、长春、郑州 | 545 | 4月13日(104.8) | 海南 |
刺槐 | Robinia pseudoacacia | 49 | 蚌埠、保定、北京、常德、承德、贵阳、哈尔滨、杭州、合肥、衡阳、呼和浩特、黄山、吉安、济南、昆明、拉萨、民勤、牡丹江、南昌、南充、南京、南平、嫩江、秦皇岛、沈阳、石家庄、太原、天津、屯溪、潍坊、武功、武汉、西安、西昌、西宁、信阳、邢台、熊岳、徐州、雅安、延安、宜宾、宜昌、银川、榆林、原平、张家口、长春、郑州 | 568 | 4月12日(103.0) | 海南 |
垂柳 | Salix babylonica | 54 | 蚌埠、保定、北安、北京、承德、福州、贵阳、桂林、哈尔滨、杭州、合肥、衡阳、呼和浩特、虎林、黄山、鸡西、济南、佳木斯、昆明、柳州、牡丹江、南昌、南充、南京、南平、嫩江、平湖、秦皇岛、厦门、沈阳、石家庄、太原、天津、屯溪、潍坊、武功、武汉、西安、西昌、西宁、信阳、邢台、熊岳、宿县、雅安、延安、宜宾、银川、鄞县、榆林、原平、张家口、长春、郑州 | 522 | 3月20日(80.9) | — |
白蜡 | Fraxinus hinensis | 19 | 保定、北京、贵阳、哈尔滨、呼和浩特、昆明、柳州、南昌、秦皇岛、太原、天津、乌鲁木齐、乌苏、西安、邢台、熊岳、延安、银川、郑州 | 195 | 4月7日(98.4) | 西藏、新疆、青海 |
Tab.2
Summary of the parameters in phenological models of different regions
物种名 | 气候分区 | a | b | f | Tl | t0 |
---|---|---|---|---|---|---|
榆树 | 温带 | 241.31 | 69.49 | 7.67 | 0.66 | 30 |
暖温带 | 232.60 | 58.12 | 8.16 | 0.71 | 22 | |
亚热带 | 170.26 | 15.18 | 9.53 | 3.86 | 28 | |
高原气候区 | 197.04 | 160.74 | 4.28 | 0.75 | 17 | |
刺槐 | 温带 | 236.35 | 183.39 | 8.88 | 1.80 | 24 |
暖温带 | 173.75 | 66.65 | 8.49 | 3.73 | 28 | |
亚热带 | 254.95 | 51.44 | 7.94 | 2.44 | 24 | |
高原气候区 | 182.82 | 186.12 | 4.59 | 1.08 | 16 | |
垂柳 | 温带 | 172.33 | 15.59 | 9.28 | 0.01 | 29 |
暖温带 | 171.21 | 15.51 | 7.96 | 0.01 | 25 | |
亚热带 | 170.28 | 15.32 | 4.61 | 0.04 | 23 | |
高原气候区 | 174.43 | 17.62 | 9.15 | 0.01 | 30 | |
白蜡 | 温带 | 318.42 | 29.05 | 4.48 | 0.25 | 21 |
暖温带 | 176.98 | 111.96 | 9.70 | 2.48 | 27 | |
亚热带 | 213.23 | 26.67 | 5.83 | 1.38 | 28 |
[1] |
温智虹, 邓国荣, 赵建军, 等. 大兴安岭植被变绿速率对霜冻的响应研究[J]. 地理科学进展, 2021, 40(5): 839-847.
doi: 10.18306/dlkxjz.2021.05.010 |
[ Wen Zhihong, Deng Guorong, Zhao Jianjun, et al. Response of velocity of vegetation greenup to frost in the Greater Khingan Mountains. Progress in Geography, 2021, 40(5): 839-847. ]
doi: 10.18306/dlkxjz.2021.05.010 |
|
[2] | 成京晋, 李浩, 早浩龙, 等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种, 2021, 19(9): 3104-3115. |
[ Cheng Jingjin, Li Hao, Zao Haolong, et al. Molecular regulation mechanism of plant response to cold stress. Molecular Plant Breeding, 2021, 19(9): 3104-3115. ] | |
[3] |
Marquis B, Bergeron Y, Simard M, et al. Growing-season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations[J]. Global Change Biology, 2020, 26(11): 6537-6554.
doi: 10.1111/gcb.v26.11 |
[4] | 屈振江, 周广胜, 魏钦平. 苹果花期冻害气象指标和风险评估[J]. 应用气象学报, 2016, 27(4): 385-395. |
[ Qu Zhenjiang, Zhou Guangsheng, Wei Qinping. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. ] | |
[5] |
高文波, 林正雨, 王明田, 等. 1971—2020年西南茶区灌木型茶树晚霜冻害危险性时空演变特征[J]. 应用生态学报, 2021, 32(11): 4029-4038.
doi: 10.13287/j.1001-9332.202111.012 |
[ Gao Wenbo, Lin Zhengyu, Wang Mingtian, et al. Spatiotemporal evolution characteristics of the late frost damage risk to shrubby tea trees in tea region, Southwest China from 1971 to 2020. Chinese Journal of Applied Ecology, 2021, 32(11): 4029-4038. ]
doi: 10.13287/j.1001-9332.202111.012 |
|
[6] |
Chmielewski F M, Götz K P, Weber K C, et al. Climate change and spring frost damages for sweet cherries in Germany[J]. International Journal of Biometeorology, 2018, 62(2): 217-228.
doi: 10.1007/s00484-017-1443-9 pmid: 28965141 |
[7] |
Morin X, Chuine I. Will tree species experience increased frost damage due to climate change because of changes in leaf phenology?[J]. Canadian Journal of Forest Research, 2014, 44(12): 1555-1565.
doi: 10.1139/cjfr-2014-0282 |
[8] |
Vitra A, Lenz A, Vitasse Y. Frost hardening and dehardening potential in temperate trees from winter to budburst[J]. New Phytologist, 2017, 216(1): 113-123.
doi: 10.1111/nph.14698 pmid: 28737248 |
[9] |
Rubio-Cuadrado Á, Gómez C, Rodríguez-Calcerrada J, et al. Differential response of oak and beech to late frost damage: An integrated analysis from organ to forest[J]. Agricultural and Forest Meteorology, 2021, 297: 108243. doi: 10.1016/j.agrformet.2020.108243.
doi: 10.1016/j.agrformet.2020.108243 |
[10] |
Sierra-Almeida A, Cavieres L A, Bravo L A. Warmer temperatures affect the in situ freezing resistance of the Antarctic vascular plants[J]. Frontiers in Plant Science, 2018, 9: 1456. doi: 10.3389/fpls.2018.01456.
doi: 10.3389/fpls.2018.01456 pmid: 30349551 |
[11] |
Ma Q Q, Huang J G, Hänninen H, et al. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming[J]. Global Change Biology, 2019, 25(1): 351-360.
doi: 10.1111/gcb.14479 pmid: 30338890 |
[12] |
Scheifinger H, Menzel A, Koch E, et al. Trends of spring time frost events and phenological dates in Central Europe[J]. Theoretical and Applied Climatology, 2003, 74(1): 41-51.
doi: 10.1007/s00704-002-0704-6 |
[13] |
Menzel A, Helm R, Zang C. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs[J]. Frontiers in Plant Science, 2015, 6: 110. doi: 10.3389/fpls.2015.00110.
doi: 10.3389/fpls.2015.00110 |
[14] |
Bigler C, Bugmann H. Climate-induced shifts in leaf unfolding and frost risk of European trees and shrubs[J]. Scientific Reports, 2018, 8: 9865. doi: 10.1038/s41598-018-27893-1.
doi: 10.1038/s41598-018-27893-1 pmid: 29959342 |
[15] |
Vitasse Y, Lenz A, Körner C. The interaction between freezing tolerance and phenology in temperate deciduous trees[J]. Frontiers in Plant Science, 2014, 5: 541. doi: 10.3389/fpls.2014.00541.
doi: 10.3389/fpls.2014.00541 pmid: 25346748 |
[16] |
Abbas S, Nichol J E, Fischer G A. Mapping and assessment of impacts of cold and frost on secondary forest in the marginally tropical landscape of Hong Kong[J]. Agricultural and Forest Meteorology, 2017, 232: 543-549.
doi: 10.1016/j.agrformet.2016.10.008 |
[17] |
Tao Z X, Xu Y J, Ge Q S, et al. Reduced frost hardiness in temperate woody species due to climate warming: A model-based analysis[J]. Climatic Change, 2021, 165: 35. doi: 10.1007/s10584-021-03074-4.
doi: 10.1007/s10584-021-03074-4 |
[18] |
Dai J H, Wang H J, Ge Q S. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years[J]. Journal of Geographical Sciences, 2013, 23(4): 641-652.
doi: 10.1007/s11442-013-1034-6 |
[19] |
He Z B, Du J, Chen L F, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China[J]. Agricultural and Forest Meteorology, 2018, 260/261: 31-40.
doi: 10.1016/j.agrformet.2018.05.022 |
[20] |
Park I W, Ramirez-Parada T, Mazer S J. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980[J]. Global Change Biology, 2021, 27(1): 165-176.
doi: 10.1111/gcb.15380 pmid: 33030240 |
[21] |
Easterling D R. Recent changes in frost days and the frost-free season in the United States[J]. Bulletin of the American Meteorological Society, 2002, 83(9): 1327-1332.
doi: 10.1175/1520-0477(2002)083<1327:RCIFDA>2.3.CO;2 |
[22] | 叶殿秀, 张勇. 1961—2007年我国霜冻变化特征[J]. 应用气象学报, 2008, 19(6): 661-665. |
[ Ye Dianxiu, Zhang Yong. Characteristics of frost changes from 1961 to 2007 over China. Journal of Applied Meteorological Science, 2008, 19(6): 661-665. ] | |
[23] |
高成蹊, 王焕炯, 葛全胜. 增温和光周期变化对温带典型木本植物展叶始期的影响[J]. 地理科学进展, 2022, 41(3): 451-460.
doi: 10.18306/dlkxjz.2022.03.008 |
[ Gao Chengxi, Wang Huanjiong, Ge Quansheng. Effects of warming and photoperiod changes on the leaf-out date of typical temperate woody plants. Progress in Geography, 2022, 41(3): 451-460. ]
doi: 10.18306/dlkxjz.2022.03.008 |
|
[24] |
Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China: A meta-analysis[J]. Global Change Biology, 2015, 21(1): 265-274.
doi: 10.1111/gcb.12648 pmid: 24895088 |
[25] |
Liu Q, Piao S L, Janssens I A, et al. Extension of the growing season increases vegetation exposure to frost[J]. Nature Communications, 2018, 9: 426. doi: 10.1038/s41467-017-02690-y.
doi: 10.1038/s41467-017-02690-y pmid: 29382833 |
[26] |
Zohner C M, Mo L D, Sebald V, et al. Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits[J]. Global Ecology and Biogeography, 2020, 29(6): 1065-1072.
doi: 10.1111/geb.v29.6 |
[27] | Wu Z Y, Raven P H, Hong D Y. Flora of China[M]. Beijing, China: Science Press, 1994. |
[28] | 宛敏渭, 刘秀珍. 中国物候观测方法[M]. 北京: 科学出版社, 1979. |
[ Wan Minwei, Liu Xiuzhen.Method of Chinese phenological observation. Beijing, China: Science Press, 1979. ] | |
[29] | Fang J Y, Wang Z H, Tang Z Y. Atlas of woody plants in China: Distribution and climate[M]. Beijing, China: Higher Education Press, 2009. |
[30] | 郑景云, 卞娟娟, 葛全胜, 等. 1981—2010年中国气候区划[J]. 科学通报, 2013, 58(30): 3088-3099. |
[ Zheng Jingyun, Bian Juanjuan, Ge Quansheng, et al. The climate regionalization in China for 1981-2010. Chinese Science Bulletin, 2013, 58(30): 3088-3099. ]
doi: 10.1007/s11434-013-5948-2 |
|
[31] |
陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464.
doi: 10.11821/dlxb202007009 |
[ Tao Zexing, Ge Quansheng, Wang Huanjiong. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018. Acta Geographica Sinica, 2020, 75(7): 1451-1464. ]
doi: 10.11821/dlxb202007009 |
|
[32] |
He J, Yang K, Tang W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7: 25. doi: 10.1038/s41597-020-0369-y.
doi: 10.1038/s41597-020-0369-y pmid: 31964891 |
[33] |
Jeong Y, Chung U, Kim K H. Predicting future frost damage risk of kiwifruit in Korea under climate change using an integrated modelling approach[J]. International Journal of Climatology, 2018, 38(14): 5354-5367.
doi: 10.1002/joc.2018.38.issue-14 |
[34] | 杨洋, 张晓煜, 张磊, 等. 宁夏酿酒葡萄越冬期冻害时空分布特征[J]. 自然灾害学报, 2019, 28(6): 214-222. |
[ Zhang Xiaoyu, Zhang Lei, et al. Spatial-temporal distribution characteristic of freezing damage risk for wine grape during overwintering in Ningxia. Journal of Natural Disasters, 2019, 28(6): 214-222. ] | |
[35] |
Rammig A, Jönsson A M, Hickler T, et al. Impacts of changing frost regimes on Swedish forests: Incorporating cold hardiness in a regional ecosystem model[J]. Ecological Modelling, 2010, 221(2): 303-313.
doi: 10.1016/j.ecolmodel.2009.05.014 |
[36] | 王焕炯, 戴君虎, 葛全胜. 1952—2007年中国白蜡树春季物候时空变化分析[J]. 中国科学(地球科学), 2012, 42(5): 701-710. |
[ Wang Huanjiong, Dai Junhu, Ge Quansheng. Temporal and spatial changes of spring phenology of Fraxinus mandshurica in China from 1952 to 2007. Scientia Sinica (Terrae), 2012, 42(5): 701-710. ] | |
[37] | 徐韵佳. 耦合物候变化的中国温带典型落叶阔叶树种抗冻性模拟与预估[D]. 北京: 中国科学院大学, 2020. |
[ Xu Yunjia. Simulation and prediction of frost resistance of typical deciduous broad-leaved tree species in temperate zone of China coupled with phenological changes. Beijing, China: University of Chinese Academy of Sciences, 2020. ] | |
[38] |
Hofmann M, Durka W, Liesebach M, et al. Intraspecific variability in frost hardiness of Fagus sylvatica L[J]. European Journal of Forest Research, 2015, 134(3): 433-441.
doi: 10.1007/s10342-015-0862-6 |
[39] |
Kreyling J, Schmid S, Aas G. Cold tolerance of tree species is related to the climate of their native ranges[J]. Journal of Biogeography, 2015, 42(1): 156-166.
doi: 10.1111/jbi.12411 |
[40] |
Li C Y, Viherä-Aarnio A, Puhakainen T, et al. Ecotype-dependent control of growth, dormancy and freezing tolerance under seasonal changes in Betula pendula Roth[J]. Trees, 2003, 17(2): 127-132.
doi: 10.1007/s00468-002-0214-2 |
[41] |
Ge Q S, Wang H J, Dai J H. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century[J]. International Journal of Biometeorology, 2014, 58(4): 473-484.
doi: 10.1007/s00484-013-0671-x pmid: 23689929 |
[42] |
Chuine I, Cour P, Rousseau D D. Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing[J]. Plant, Cell and Environment, 1998, 21(5): 455-466.
doi: 10.1046/j.1365-3040.1998.00299.x |
[43] |
Körner C, Basler D. Plant science: Phenology under global warming[J]. Science, 2010, 327: 1461-1462.
doi: 10.1126/science.1186473 |
[44] | Taiz L, Zeiger E. Plant physiology[M]. 4th ed. Sunderland, UK: Sinauer Associates, 2006. |
[45] |
Lenz A, Hoch G, Vitasse Y, et al. European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients[J]. New Phytologist, 2013, 200(4): 1166-1175.
doi: 10.1111/nph.12452 pmid: 23952607 |
[46] |
Cannell M G R, Smith R I. Climatic warming, spring budburst and frost damage on trees[J]. Journal of Applied Ecology, 1986, 23(1): 177-191.
doi: 10.2307/2403090 |
[47] |
Augspurger C K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing[J]. Ecology, 2013, 94(1): 41-50.
pmid: 23600239 |
[48] |
Linkosalo T, Carter T R, Häkkinen R, et al. Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: A comparison of two models[J]. Tree Physiology, 2000, 20(17): 1175-1182.
pmid: 12651493 |
[49] |
Fyfe J C, Meehl G A, England M H, et al. Making sense of the early-2000s warming slowdown[J]. Nature Climate Change, 2016, 6: 224-228.
doi: 10.1038/nclimate2938 |
[50] |
Shen M G, Jiang N, Chen J, et al. Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming[J]. Climate and Atmospheric Science, 2022, doi: 10.21203/rs.3.rs-2120619/v1.
doi: 10.21203/rs.3.rs-2120619/v1 |
[51] | IPCC. Summary for policymakers // IPCC. Global Warming of 1.5 ℃[R]. Geneva, Switzerland: World Meteorological Organization, 2018. |
[52] |
Fu Y H, Zhao H F, Piao S L, et al. Declining global warming effects on the phenology of spring leaf unfolding[J]. Nature, 2015, 526: 104-107.
doi: 10.1038/nature15402 |
[53] |
Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10): 3647-3656.
doi: 10.1111/gcb.12961 pmid: 25926356 |
[54] |
Sierra-Almeida A, Reyes-Bahamonde C, Cavieres L A. Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes[J]. Oecologia, 2016, 181(4): 1011-1023.
doi: 10.1007/s00442-016-3622-5 pmid: 27053321 |
|