PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (12): 2342-2355.doi: 10.18306/dlkxjz.2022.12.012
• Articles • Previous Articles Next Articles
LAN Zhiyang1(), LIANG Wei1,*(
), FU Bojie2, LV Yihe2, YAN Jianwu1, JI Qiulei2
Received:
2022-03-07
Revised:
2022-08-18
Online:
2022-12-28
Published:
2022-12-31
Contact:
LIANG Wei
E-mail:zhiyangl1998@snnu.edu.cn;liangwei@snnu.edu.cn
Supported by:
LAN Zhiyang, LIANG Wei, FU Bojie, LV Yihe, YAN Jianwu, JI Qiulei. Attribution analysis of vegetation change in the Yellow River Basin based on causal network[J].PROGRESS IN GEOGRAPHY, 2022, 41(12): 2342-2355.
Tab.1
Information table for node metrics in the network
节点 | 入度 | 出度 | 接近中心性 | 中介中心性 | 出度/入度 |
---|---|---|---|---|---|
土壤温度 | 856 | 619 | 1 | 2.42 | 0.72 |
风速 | 491 | 483 | 1 | 10.44 | 0.98 |
土壤水 | 844 | 257 | 0.95 | 1.73 | 0.30 |
饱和水汽压差 | 590 | 780 | 0.95 | 11.00 | 1.32 |
径流 | 233 | 318 | 1 | 3.03 | 1.36 |
气温 | 588 | 975 | 0.95 | 1.05 | 1.66 |
降水量 | 422 | 1114 | 0.78 | 1.97 | 2.64 |
农业生产总值 | 158 | 122 | 1 | 0.38 | 0.77 |
粮食产量 | 110 | 119 | 1 | 0.68 | 1.08 |
水果产量 | 123 | 83 | 1 | 0.35 | 0.67 |
城镇化率 | 182 | 176 | 1 | 0.78 | 0.97 |
农业机械总动力 | 92 | 75 | 0.90 | 0.09 | 0.82 |
化肥用量 | 45 | 34 | 0.86 | 0 | 0.76 |
农业用地 | 136 | 112 | 0.95 | 1.60 | 0.82 |
果园和梯田 | 162 | 121 | 1 | 0.55 | 0.75 |
草地 | 133 | 143 | 1 | 0.50 | 1.08 |
城镇建设用地 | 145 | 167 | 0.95 | 0.67 | 1.15 |
林地 | 176 | 139 | 0.95 | 0.71 | 0.79 |
Tab.2
Information table for main nodes in the network
节点 | 节点在所有路径中出现的次数 | 以该节点为起点、LAI 节点为终点的路径数 | 节点 | 节点在所有路径中出现的次数 | 以该节点为起点、LAI 节点为终点的路径数 |
---|---|---|---|---|---|
饱和水汽压差 | 740 | 300 | 城镇建设用地 | 36 | 24 |
降水量 | 696 | 378 | 粮食产量 | 36 | 26 |
气温 | 629 | 339 | 水果产量 | 30 | 14 |
土壤温度 | 573 | 278 | 林地 | 28 | 16 |
风速 | 430 | 224 | 果园和梯田 | 24 | 16 |
土壤水 | 274 | 107 | 化肥用量 | 21 | 7 |
径流 | 248 | 179 | 草地 | 20 | 13 |
城镇化率 | 58 | 35 | 农业生产总值 | 12 | 10 |
农业用地 | 39 | 25 | 农业机械总动力 | 11 | 8 |
[1] |
Liu J G, Dietz T, Carpenter S R, et al. Complexity of coupled human and natural systems[J]. Science, 2007, 317: 1513-1516.
doi: 10.1126/science.1144004 pmid: 17872436 |
[2] |
Levin S, Xepapadeas T, Crépin A S, et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications[J]. Environment and Development Economics, 2013, 18(2): 111-132.
doi: 10.1017/S1355770X12000460 |
[3] |
Mace G M, Reyers B, Alkemade R, et al. Approaches to defining a planetary boundary for biodiversity[J]. Global Environmental Change, 2014, 28: 289-297.
doi: 10.1016/j.gloenvcha.2014.07.009 |
[4] |
Piao S L, Wang X H, Ciais P, et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 2011, 17(10): 3228-3239.
doi: 10.1111/j.1365-2486.2011.02419.x |
[5] |
Peng J, Liu Z H, Liu Y H, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 2012, 14(1): 28-39.
doi: 10.1016/j.ecolind.2011.08.011 |
[6] | 马启民, 贾晓鹏, 王海兵, 等. 气候和人为因素对植被变化影响的评价方法综述[J]. 中国沙漠, 2019, 39(6): 48-55. |
[ Ma Qimin, Jia Xiaopeng, Wang Haibing, et al. Recent advances in driving mechanisms of climate and anthropogenic factors on vegetation change. Journal of Desert Research, 2019, 39(6): 48-55. ] | |
[7] |
Xiao Z Q, Liang S L, Wang J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5301-5318.
doi: 10.1109/TGRS.2016.2560522 |
[8] |
Fang H L, Frederic B, Plummer S, et al. An overview of global leaf area index (LAI): Methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799.
doi: 10.1029/2018RG000608 |
[9] | Lahoz W A. Systematic observation requirements for satellite-based products for climate supplemental details to the satellite-based component of the implementation plan for the global observing system for climate in support of the UNFCCC: 2011 update[M]. Geneva, Switzerland: WMO, 2011. |
[10] |
Liang X Y, Zhang T, Lu X K, et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis[J]. Global Change Biology, 2020, 26(6): 3585-3600.
doi: 10.1111/gcb.15071 pmid: 32146723 |
[11] | 彭飞, 孙国栋. 1982—1999年中国地区叶面积指数变化及其与气候变化的关系[J]. 气候与环境研究, 2017, 22(2): 162-176. |
[ Peng Fei, Sun Guodong. Variation of leaf area index in China from 1982 to 1999 and its relationship with climate change. Climatic & Environmental Research, 2017, 22(2): 162-176. ] | |
[12] | 赵安周, 刘宪锋, 朱秀芳, 等. 2000—2014年黄土高原植被覆盖时空变化特征及其归因[J]. 中国环境科学, 2016, 36(5): 1568-1578. |
[ Zhao Anzhou, Liu Xianfeng, Zhu Xiufang, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau. China Environmental Science, 2016, 36(5): 1568-1578. ] | |
[13] |
李双双, 张玉凤, 汪成博, 等. 气候变化和生态建设对秦岭—淮河南北植被动态的影响[J]. 地理科学进展, 2021, 40(6): 1026-1036.
doi: 10.18306/dlkxjz.2021.06.012 |
[ Li Shuangshuang, Zhang Yufeng, Wang Chengbo, et al. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region. Progress in Geography, 2021, 40(6): 1026-1036. ]
doi: 10.18306/dlkxjz.2021.06.012 |
|
[14] |
王子玉, 许端阳, 杨华, 等. 1981—2010年气候变化和人类活动对内蒙古地区植被动态影响的定量研究[J]. 地理科学进展, 2017, 36(8): 1025-1032.
doi: 10.18306/dlkxjz.2017.08.011 |
[ Wang Ziyu, Xu Duanyang, Yang Hua, et al. Impacts of climate change and human activities on vegetation dynamics in Inner Mongolia, 1981-2010. Progress in Geography, 2017, 36(8): 1025-1032. ]
doi: 10.18306/dlkxjz.2017.08.011 |
|
[15] |
Lv Y H, Fu B J, Feng X M, et al. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China[J]. PLoS One, 2012, 7(2): e31782. doi: 10.1371/journal.pone.0031782.
doi: 10.1371/journal.pone.0031782 |
[16] |
Li S, Liang W, Fu B J, et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China's Loess Plateau[J]. Science of the Total Environment, 2016, 569/570: 1032-1039.
doi: 10.1016/j.scitotenv.2016.06.141 |
[17] |
Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China's Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247: 260-270.
doi: 10.1016/j.agrformet.2017.08.005 |
[18] |
Sun W Y, Song X Y, Mu X M, et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau[J]. Agricultural and Forest Meteorology, 2015, 209/210: 87-99.
doi: 10.1016/j.agrformet.2015.05.002 |
[19] | 杨胜天, 刘昌明, 孙睿. 近20年来黄河流域植被覆盖变化分析[J]. 地理学报, 2002, 57(6): 679-684. |
[ Yang Shengtian, Liu Changming, Sun Rui. The vegetation cover over last 20 years in Yellow River Basin. Acta Geographica Sinica, 2002, 57(6): 679-684. ]
doi: 10.11821/xb200206007 |
|
[20] | 刘海, 刘凤, 郑粮. 气候变化及人类活动对黄河流域植被覆盖变化的影响[J]. 水土保持学报, 2021, 35(4): 143-151. |
[ Liu Hai, Liu Feng, Zheng Liang. Effects of climate change and human activities on vegetation cover change in the Yellow River Basin. Journal of Soil and Water Conservation, 2021, 35(4): 143-151. ] | |
[21] | 田智慧, 任祖光, 魏海涛. 2000—2020年黄河流域植被时空演化驱动机制[J]. 环境科学, 2022, 43(2): 743-751. |
[ Tian Zhihui, Ren Zuguang, Wei Haitao. Driving mechanism of the spatiotemporal evolution of vegetation in the Yellow River Basin from 2000 to 2020. Environmental Science, 2022, 43(2): 743-751. ]
doi: 10.1021/es801135v |
|
[22] | 陈晨, 王义民, 黎云云, 等. 黄河流域1982—2015年不同气候区植被时空变化特征及其影响因素[J]. 长江科学院院报, 2022, 39(2): 56-62, 81. |
[ Wang Yimin, Li Yunyun, et al. Vegetation changes and influencing factors in different climatic regions of Yellow River Basin from 1982 to 2015. Journal of Yangtze River Scientific Research Institute, 2022, 39(2): 56-62, 81. ] | |
[23] |
宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵[J]. 地理学报, 2018, 73(7): 1204-1213.
doi: 10.11821/dlxb201807002 |
[ Song Chang-qing, Cheng Changxiu, Shi Peijun. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 2018, 73(7): 1204-1213. ]
doi: 10.11821/dlxb201807002 |
|
[24] |
Runge J, Bathiany S, Bollt E, et al. Inferring causation from time series in Earth system sciences[J]. Nature Communications, 2019, 10(1): 2553. doi: 10.1038/s41467-019-10105-3.
doi: 10.1038/s41467-019-10105-3 pmid: 31201306 |
[25] |
Sun A Y, Xia Y L, Caldwell T G, et al. Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis[J]. Advances in Water Resources, 2018, 112: 203-213.
doi: 10.1016/j.advwatres.2017.12.019 |
[26] |
管靖, 宋周莺, 刘卫东. 全球粮食贸易网络演变及其驱动因素解析[J]. 地理科学进展, 2022, 41(5): 755-769.
doi: 10.18306/dlkxjz.2022.05.002 |
[ Guan Jing, Song Zhouying, Liu Weidong. Change of the global grain trade network and its driving factors. Progress in Geography, 2022, 41(5): 755-769. ]
doi: 10.18306/dlkxjz.2022.05.002 |
|
[27] |
Song Z Y, Zhu Q L, Han M Y. Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows[J]. Energy, 2021, 217: 119359. doi: 10.1016/j.energy.2020.119359.
doi: 10.1016/j.energy.2020.119359 |
[28] |
何则, 杨宇, 刘毅, 等. 世界能源贸易网络的演化特征与能源竞合关系[J]. 地理科学进展, 2019, 38(10): 1621-1632.
doi: 10.18306/dlkxjz.2019.10.016 |
[ He Ze, Yang Yu, Liu Yi, et al. Characteristics of evolution of global energy trading network and relationships between major countries. Progress in Geography, 2019, 38(10): 1621-1632. ]
doi: 10.18306/dlkxjz.2019.10.016 |
|
[29] | 张娣娟. 基于复杂网络的兰州市公交网络分析[J]. 西部交通科技, 2014(1): 57-60. |
[ Zhang Dijuan. Analysis of Lanzhou public transit network based on complex network. Western China Communications Science & Technology, 2014(1): 57-60. ] | |
[30] |
莫辉辉, 王姣娥, 金凤君. 交通运输网络的复杂性研究[J]. 地理科学进展, 2008, 27(6): 112-120.
doi: 10.11820/dlkxjz.2008.06.016 |
[ Mo Huihui, Wang Jiao'e, Jin Fengjun. Complexity perspectives on transportation network. Progress in Geography, 2008, 27(6): 112-120. ]
doi: 10.11820/dlkxjz.2008.06.016 |
|
[31] |
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436.
doi: 10.11821/dlxb201912001 |
[ Lu Dadao, Sun Dongqi. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion. Acta Geographica Sinica, 2019, 74(12): 2431-2436. ]
doi: 10.11821/dlxb201912001 |
|
[32] |
赵建吉, 刘岩, 朱亚坤, 等. 黄河流域新型城镇化与生态环境耦合的时空格局及影响因素[J]. 资源科学, 2020, 42(1): 159-171.
doi: 10.18402/resci.2020.01.16 |
[ Zhao Jianji, Liu Yan, Zhu Yakun, et al. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resources Science, 2020, 42(1): 159-171. ]
doi: 10.18402/resci.2020.01.16 |
|
[33] |
Zheng K, Wei J Z, Pei J Y, et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau[J]. Science of the Total Environment, 2019, 660: 236-244.
doi: 10.1016/j.scitotenv.2019.01.022 |
[34] |
Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10): 739-741.
doi: 10.1038/ngeo2544 |
[35] |
Ji Q L, Liang W, Fu B J, et al. Mapping land use/cover dynamics of the Yellow River Basin from 1986 to 2018 supported by Google Earth Engine[J]. Remote Sensing, 2021, 13(7): 1299. doi: 10.3390/rs13071299.
doi: 10.3390/rs13071299 |
[36] | 张滔, 唐宏. 基于Google Earth Engine的京津冀2001—2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599. |
[ Zhang Tao, Tang Hong. Vegetation cover change and urban expansion in Beijing-Tianjin-Hebei during 2001-2015 based on Google Earth Engine. Remote Sensing Technology and Application, 2018, 33(4): 593-599. ] | |
[37] | 马战林, 刘昌华, 薛华柱, 等. GEE环境下融合主被动遥感数据的冬小麦识别技术[J]. 农业机械学报, 2021, 52(9): 195-205. |
[ Ma Zhanlin, Liu Changhua, Xue Huazhu, et al. Identification of winter wheat by integrating active and passive remote sensing data based on Google Earth Engine platform. Transactions of the CSAM, 2021, 52(9): 195-205. ] | |
[38] | Pearl J. Causality: Models, reasoning, and inference[M]. Cambridge, UK: Cambridge University Press, 2000. |
[39] | Spirtes P, Glymour C, Scheines R, et al. Causation, prediction, and search[M]. 2nd ed. Massachusetts, USA: MIT Press, 2000. |
[40] |
Gao J X, Barzel B, Barabási A L. Universal resilience patterns in complex networks[J]. Nature, 2016, 530: 307-312.
doi: 10.1038/nature16948 |
[41] |
Manson S, An L, Clarke K C, et al. Methodological issues of spatial agent-based models[J]. Journal of Artificial Societies and Social Simulation, 2020, 23(1). doi: 10.18564/JASSS.4174.
doi: 10.18564/JASSS.4174 |
[42] |
Pržulj N. Biological network comparison using graphlet degree distribution[J]. Bioinformatics, 2007, 23(2): e177-83. doi: 10.1093/bioinformatics/btl301.
doi: 10.1093/bioinformatics/btl301 pmid: 17237089 |
[43] | Barthelemy M. Betweenness centrality in large complex networks[J]. The European Physical Journal B: Condensed Matter, 2004, 38(2): 163-168. |
[44] | Okamoto K, Chen W, Li X Y. Ranking of closeness centrality for large-scale social networks[M]// PreparataF P, WuX D, YinJ P. Frontiers in algorithmics. Berlin, Germany: Springer, 2008: 186-195. |
[45] | 马柱国, 符淙斌, 周天军, 等. 黄河流域气候与水文变化的现状及思考[J]. 中国科学院院刊, 2020, 35(1): 52-60. |
[ Ma Zhuguo, Fu Congbin, Zhou Tianjun, et al. Status and ponder of climate and hydrology changes in the Yellow River Basin. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 52-60. ] | |
[46] | 彭绪庶. 黄河流域生态保护和高质量发展: 战略认知与战略取向[J]. 生态经济, 2022, 38(1): 177-185. |
[ Peng Xushu. Ecological protection and high quality development in the Yellow River Basin: Strategic cognition and orientation. Ecological Economy, 2022, 38(1): 177-185. ]
doi: 10.1016/S0921-8009(01)00211-7 |
|
[47] | 张宝庆, 吴普特, 赵西宁. 近30 a黄土高原植被覆盖时空演变监测与分析[J]. 农业工程学报, 2011, 27(4): 287-293, 400. |
[ Zhang Baoqing, Wu Pute, Zhao Xining. Detecting and analysis of spatial and temporal variation of vegetation cover in the Loess Plateau during 1982-2009. Transactions of the CSAE, 2011, 27(4): 287-293, 400. ] | |
[48] |
Naeem S, Zhang Y Q, Zhang X Z, et al. Both climate and socioeconomic drivers contribute to vegetation greening of the Loess Plateau[J]. Science Bulletin, 2021, 66(12): 1160-1163.
doi: 10.1016/j.scib.2021.03.007 |
[49] |
Sjögersten S, Atkin C, Clarke M L, et al. Responses to climate change and farming policies by rural communities in Northern China: A report on field observation and farmers' perception in dryland north Shaanxi and Ning-xia[J]. Land Use Policy, 2013, 32: 125-133.
doi: 10.1016/j.landusepol.2012.09.014 |
[50] |
Bryan B A, Gao L, Ye Y Q, et al. China's response to a national land-system sustainability emergency[J]. Nature, 2018, 559: 193-204.
doi: 10.1038/s41586-018-0280-2 |
[1] | ZHANG Wenjia, NIU Caicheng, ZHU Jiancheng. Progress of regional spatial structure research from the perspective of behavior network [J]. PROGRESS IN GEOGRAPHY, 2022, 41(8): 1504-1515. |
[2] | ZHANG Mengmeng, ZHANG Lijun, QIN Yaochen, YANG Xiaowan, TIAN Mengnan, LIU Xiufang. Spatial pattern and influencing factors of small town population and economic growth and contraction in the Yellow River Basin [J]. PROGRESS IN GEOGRAPHY, 2022, 41(6): 999-1011. |
[3] | LI Tao, CUI Leibo, LI Jiyuan, CHEN Huiling, CAO Xiaoshu. Spatial pattern of transport condition and its matching with county development in the Yellow River Basin [J]. PROGRESS IN GEOGRAPHY, 2022, 41(11): 2030-2043. |
[4] | XIE Bo, XIAO Yangmou. Progress of research on the mechanism of impact of urban road network characteristics on traffic accidents [J]. PROGRESS IN GEOGRAPHY, 2022, 41(10): 1956-1968. |
[5] | WANG Haoyu, JIA Yana, ZHANG Yuzhu, WANG Ninglian, LUO Pingping, QIU Haijun, Ayidina SAILEBIEKE, XIAO Qili, CHEN Dou. Research progress of paleoflood events in the Yellow River Basin since the Last Deglaciation [J]. PROGRESS IN GEOGRAPHY, 2021, 40(7): 1220-1234. |
[6] | GUO Jianke, HOU Yajie, HE Yao. Characteristics of change of the China-Europe port shipping network under the Belt and Road Initiative [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 716-726. |
[7] | WANG Xiaonan, SUN Wei. Transformation efficiency of resource-based cities in the Yellow River Basin and its influencing factors [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1643-1655. |
[8] | Jianke GUO, Yao HE, Yajie HOU. Spatial connection and regional difference of the coastal container port shipping network of China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1499-1509. |
[9] | Xiaojie WEN, Shunbo YAO, Minjuan ZHAO. Coordinating the development of urbanization and vegetation coverage based on precipitation [J]. PROGRESS IN GEOGRAPHY, 2018, 37(10): 1352-1361. |
[10] | Kun QIN, Qing ZHOU, Yuanquan XU, Wenting XU, Ping LUO. Spatial interaction network analysis of urban traffic hotspots [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1149-1157. |
[11] | Chenguang LIU, Jiajun QIAO. Rural economic differentiation and spatial change in the Yellow River Basin [J]. PROGRESS IN GEOGRAPHY, 2016, 35(11): 1329-1339. |
[12] | Wei ZHENG. Research progress and development trend in urban economic network study based on complexity theory [J]. PROGRESS IN GEOGRAPHY, 2015, 34(6): 676-686. |
[13] | Xiaoyan HUANG, Shuang ZHANG, Xiaoshu CAO. Spatial-temporal evolution of Guangzhou subway accessibility and its effects on the accessibility of public transportation services [J]. PROGRESS IN GEOGRAPHY, 2014, 33(8): 1078-1089. |
[14] | LIU Fengshan, TAO Fulu, XIAO Dengpan, ZHANG Shuai, WANG Meng, ZHANG He. Influence of land use change on surface energy balance and climate:results from SiB2 model simulation [J]. PROGRESS IN GEOGRAPHY, 2014, 33(6): 815-824. |
[15] | WANG Xi, QIN Yaochen, LU Fengxian, ZHANG Dai, JIANG Xiangya. Temporal and spatial differences in the level of low carbon economic development among the provinces in the middle and lower reaches of the Yellow River Basin [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 505-513. |
|