PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (12): 2327-2341.doi: 10.18306/dlkxjz.2022.12.011
• Articles • Previous Articles Next Articles
ZHOU Peifang1,2,3(), ZHOU Tao1,2,3,*(
), LIU Xia1,2,3, ZHANG Yajie1,2,3, XU Yixin1,2,3, LUO Hui1,2,3, YU Peixin1,2,3, ZHANG Jingzhou1,2,3
Received:
2022-03-07
Revised:
2022-10-25
Online:
2022-12-28
Published:
2022-12-31
Contact:
ZHOU Tao
E-mail:pfzhou@mail.bnu.edu.cn;tzhou@bnu.edu.cn
Supported by:
ZHOU Peifang, ZHOU Tao, LIU Xia, ZHANG Yajie, XU Yixin, LUO Hui, YU Peixin, ZHANG Jingzhou. Estimation of soil organic carbon and its uncertainty in Qinghai Province[J].PROGRESS IN GEOGRAPHY, 2022, 41(12): 2327-2341.
[1] |
Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216 |
[2] |
Plaza C, Pegoraro E, Bracho R, et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra[J]. Nature Geoscience, 2019, 12(8): 627-631.
doi: 10.1038/s41561-019-0387-6 |
[3] | 罗光强, 耿元波, 袁国富. 碳同位素在草地生态系统碳循环中的应用与展望[J]. 地理科学进展, 2009, 28(3): 441-448. |
[ Luo Guangqiang, Geng Yuanbo, Yuan Guofu. Application and prospect of carbon isotope in the study of carbon cycle in grassland ecosystem. Progress in Geography, 2009, 28(3): 441-448. ]
doi: 10.11820/dlkxjz.2009.03.018 |
|
[4] | 苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展[J]. 中国沙漠, 2002, 22(3): 220-228. |
[ Su Yongzhong, Zhao Halin. Advances in researches on soil organic carbon storages, affecting factors and its environmental effects. Journal of Desert Research, 2002, 22(3): 220-228. ] | |
[5] |
Gomes L C, Faria R M, Souza E, et al. Modelling and mapping soil organic carbon stocks in Brazil[J]. Geoderma, 2019, 340: 337-350.
doi: 10.1016/j.geoderma.2019.01.007 |
[6] |
Scharlemann J P, Tanner E V, Hiederer R, et al. Global soil carbon: Understanding and managing the largest terrestrial carbon pool[J]. Carbon Management, 2014, 5(1): 81-91.
doi: 10.4155/cmt.13.77 |
[7] | 田玉强, 欧阳华, 徐兴良, 等. 青藏高原土壤有机碳储量与密度分布[J]. 土壤学报, 2008, 45(5): 933-942. |
[ Tian Yuqiang, Ouyang Hua, Xu Xingliang, et al. Distribution characteristics of soil organic carbon storage and density on the Qinghai-Tibet Plateau. Acta Pedologica Sinica, 2008, 45(5): 933-942. ] | |
[8] |
Wang D, Li X X, Zou D F, et al. Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau[J]. Catena, 2020, 187: 104399. doi: 10.1016/j.catena.2019.104399.
doi: 10.1016/j.catena.2019.104399 |
[9] | Zhang Y Q, Tang Y H, Jiang J, et al. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau[J]. Science in China Series D: Earth Sciences, 2007, 50(1): 113-120. |
[10] |
Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14(7): 1592-1599.
doi: 10.1111/j.1365-2486.2008.01591.x |
[11] |
Ding J Z, Li F, Yang G B, et al. The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores[J]. Global Change Biology, 2016, 22(8): 2688-2701.
doi: 10.1111/gcb.13257 pmid: 26913840 |
[12] |
Ding J Z, Wang T, Piao S L, et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region[J]. Nature Communications, 2019, 10: 4195. doi: 10.1038/s41467-019-12214-5.
doi: 10.1038/s41467-019-12214-5 pmid: 31519899 |
[13] | IPCC. Climate change 2013: The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2013. |
[14] |
王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展[J]. 地理科学进展, 2012, 31(1): 123-128.
doi: 10.11820/dlkxjz.2012.01.016 |
[ Wang Junbang, Huang Mei, Lin Xiaohui. Review on carbon budget of the grassland ecosystems on the Qinghai-Tibet Plateau. Progress In Geography, 2012, 31(1): 123-128. ]
doi: 10.11820/dlkxjz.2012.01.016 |
|
[15] | 潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18): 6374-6384. |
[ Pan Ruirui, Li Xiaoyan, Hu Guangrong, et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin. Acta Ecologica Sinica, 2020, 40(18): 6374-6384. ] | |
[16] |
Liu S L, Du Y G, Zhang F W, et al. Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau[J]. Journal of Mountain Science, 2016, 13(10): 1806-1817.
doi: 10.1007/s11629-015-3764-7 |
[17] | 李娜娜, 张彦军, 周小刚, 等. 青海乐都县30 a来农田表层土壤有机碳储量变化特征[J]. 自然资源学报, 2015, 30(6): 1005-1012. |
[ Li Nana, Zhang Yanjun, Zhou Xiaogang, et al. Changing characteristics of soil organic carbon storage in cropland in Ledu of Qinghai in recent 30 Years. Journal of Natural Resources, 2015, 30(6): 1005-1012. ] | |
[18] | 王艳丽, 字洪标, 程瑞希, 等. 青海省森林土壤有机碳氮储量及其垂直分布特征[J]. 生态学报, 2019, 39(11): 4096-4105. |
[ Wang Yanli, Zi Hongbiao, Cheng Ruixi, et al. Forest soil organic carbon and nitrogen storage and characteristics of vertical distribution in Qinghai Province. Acta Ecologica Sinica, 2019, 39(11): 4096-4105. ] | |
[19] |
Zhao D S, Wu S H, Yin Y H. Dynamic responses of soil organic carbon to climate change in the Three-River Headwater region of the Tibetan Plateau[J]. Climate Research, 2013, 56(1): 21-32.
doi: 10.3354/cr01141 |
[20] |
Chang X F, Zhu X X, Wang S P, et al. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau[J]. Biogeosciences, 2014, 11(13): 3495-3503.
doi: 10.5194/bg-11-3495-2014 |
[21] |
Han Z, Song W, Deng X Z. Responses of ecosystem service to land use change in Qinghai Province[J]. Energies, 2016, 9(4): 303. doi: 10.3390/en9040303.
doi: 10.3390/en9040303 |
[22] | 陈灵芝. 中国植物区系与植被地理[M]. 北京: 科学出版社, 2014. |
[ Chen Lingzhi. Flora and vegetation geography of China. Beijing, China: Science Press, 2014. ] | |
[23] |
Liu X, Zhou T, Shi P, et al. Uncertainties of soil organic carbon stock estimation caused by paleoclimate and human footprint on the Qinghai Plateau[J]. Carbon Balance and Management, 2022, 17(1): 8. doi: 10.1186/s13021-022-00203-z.
doi: 10.1186/s13021-022-00203-z pmid: 35616782 |
[24] | 丁明军. 青藏高原及周边地区气温和降水格点数据(1998—2017)[DB/OL]. 国家青藏高原科学数据中心, 2019-11-23 [ 2021-06-01]. http://data.tpdc.ac.cn/zh-hans/data/c954daad-6086-4edd-a6c5-f69c581e5c31/?q=%E4%B8%81%E6%98%8E%E5%86%9B. |
[ Ding Mingjun. Temperature and precipitation grid data of the Qinghai Tibet Plateau and its surrounding areas in 1998-2017. National Tibetan Plateau Data Center, 2019-11-23 [2021-06-01]. http://data.tpdc.ac.cn/zh-hans/data/c954daad-6086-4edd-a6c5-f69c581e5c31/?q=%E4%B8%81%E6%98%8E%E5%86%9B. ] | |
[25] |
Cheng J, Liang S L. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 614-634.
doi: 10.1002/2013JD020689 |
[26] |
Xiao Z Q, Liang S L, Sun R, et al. Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product[J]. Remote Sensing of Environment, 2015, 171: 105-117.
doi: 10.1016/j.rse.2015.10.016 |
[27] | 徐新良. 中国年度植被指数(NDVI)空间分布数据集[DB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统, 2019-03-14 [ 2021-06-01]. https://www.resdc.cn/DOI/doi.aspx?DOIid=49. |
[ Xu Xinliang. China annual Vegetation Index (NDVI) spatial distribution dataset. Data Registration and Publication System of Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, 2019-03-14 [ 2021-06-01]. https://www.resdc.cn/DOI/doi.aspx?DOIid=49. ] | |
[28] |
Xiao Z Q, Liang S L, Wang J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5301-5318.
doi: 10.1109/TGRS.2016.2560522 |
[29] |
Xiao Z Q, Liang S L, Wang J D, et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 209-223.
doi: 10.1109/TGRS.2013.2237780 |
[30] | 陈鹏飞. 北纬18°以北中国陆地生态系统逐月净初级生产力1公里栅格数据集(1985—2015)[J]. 全球变化数据学报, 2019, 3(1): 34-41. |
[ Chen Pengfei. Monthly NPP 1 km raster dataset of China's terrestrial ecosystems (1985-2015). Journal of Global Change Data & Discovery, 2019, 3(1): 34-41. ] | |
[31] | Spawn S A, Gibbs H K. Global aboveground and belowground biomass carbon density maps for the year 2010[DB/OL]. ORNL DAAC, Oak Ridge, USA, 2020-04-22 [ 2021-06-01]. https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763. |
[32] | 汤国安. 中国数字高程图(1KM)[DB/OL]. 国家青藏高原科学数据中心, 2019-06-29 [ 2021-06-01]. http://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734/?q=%E6%B1%A4%E5%9B%BD%E5%AE%89. |
[ Tang Guo'an. Digital elevation model of China(1KM). National Tibetan Plateau Data Center, 2019-06-29 [2021-06-01]. http://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734/?q=%E6%B1%A4%E5%9B%BD%E5%AE%89. ] | |
[33] | Fischer G, Nachtergaele F O, Prieler S, et al. Global Agro-ecological Zones Assessment for Agriculture(GAEZ 2008)[DB/OL]. IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2020-04-20 [ 2021-06-01]. https://data.tpdc.ac.cn/zh-hans/data/611f7d50-b419-4d14-b4dd-4a944b141175/?q=hwsd. |
[34] |
Wei S G. A China data set of soil properties for land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 2013, 5: 212-224.
doi: 10.1002/jame.20026 |
[35] | Gunst R F, Mason R L. Regression analysis and its application: A data-oriented approach[M]. New York, USA: CRC Press, 1980. |
[36] | Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]// Blue R B, Rosenberg A M. Proceedings of the 1968 23rd ACM national conference. New York, USA: Association for Computing Machinery, 1968: 517-524. |
[37] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[38] |
Cruz-Cárdenas G, López-Mata L, Ortiz-Solorio C A, et al. Interpolation of Mexican soil properties at a scale of 1∶1000000[J]. Geoderma, 2014, 213: 29-35.
doi: 10.1016/j.geoderma.2013.07.014 |
[39] |
Dharumarajan S, Hegde R, Singh S K. Spatial prediction of major soil properties using Random Forest techniques: A case study in semi-arid tropics of South India[J]. Geoderma Regional, 2017, 10: 154-162.
doi: 10.1016/j.geodrs.2017.07.005 |
[40] |
周晓宇, 张称意, 郭广芬. 气候变化对森林土壤有机碳贮藏影响的研究进展[J]. 应用生态学报, 2010, 21(7): 1867-1874.
pmid: 20879549 |
[ Zhou Xiaoyu, Zhang Chengyi, Guo Guangfen. Effects of climate change on forest soil organic carbon storage: A review. Chinese Journal of Applied Ecology, 2010, 21(7): 1867-1874. ]
pmid: 20879549 |
|
[41] | Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189: 11-18. |
[42] |
王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11): 3300-3310.
pmid: 24564163 |
[ Wang Xinyuan, Zhao Xueyong, Li Yulin, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review. Chinese Journal of Applied Ecology, 2013, 24(11): 3300-3310. ]
pmid: 24564163 |
|
[43] | 刘春华, 吴东梅, 刘雨晖, 等. 氮沉降对米槠天然林土壤有机碳及微生物群落结构的影响[J]. 林业科学研究, 2021, 34(2): 42-49. |
[ Liu Chunhua, Wu Dongmei, Liu Yuhui, et al. Effects of nitrogen deposition on soil organic carbon and soil microbial communities in a natural Castanopsis carlesii forest. Forest Research, 2021, 34(2): 42-49. ] | |
[44] |
Zhang H, Wu P B, Yin A J, et al. Prediction of soil organic carbon in an intensively managed reclamation zone of Eastern China: A comparison of multiple linear regressions and the random forest model[J]. Science of the Total Environment, 2017, 592: 704-713.
doi: 10.1016/j.scitotenv.2017.02.146 |
[45] |
Grimm R, Behrens T, Märker M, et al. Soil organic carbon concentrations and stocks on Barro Colorado Island: Digital soil mapping using Random Forests analysis[J]. Geoderma, 2008, 146(1-2): 102-113.
doi: 10.1016/j.geoderma.2008.05.008 |
[46] | 沈润平, 丁国香, 魏国栓, 等. 基于人工神经网络的土壤有机质含量高光谱反演[J]. 土壤学报, 2009, 46(3): 391-397. |
[ Shen Runping, Ding Guoxiang, Wei Guoshuan, et al. Retrieval of soil organic matter content from hyper-spectrum based on ANN. Acta Pedologica Sinica, 2009, 46(3): 391-397. ] | |
[47] |
Phachomphon K, Dlamini P, Chaplot V. Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables[J]. Geoderma, 2010, 155: 372-380.
doi: 10.1016/j.geoderma.2009.12.020 |
[48] |
Dai F Q, Zhou Q G, Lv Z Q, et al. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau[J]. Ecological Indicators, 2014, 45: 184-194.
doi: 10.1016/j.ecolind.2014.04.003 |
[49] |
Alsamamra H, Ruiz-Arias J A, Pozo-Vázquez D, et al. A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain[J]. Agricultural and Forest Meteorology, 2009, 149(8): 1343-1357.
doi: 10.1016/j.agrformet.2009.03.005 |
[50] |
王栋, 吴晓东, 魏献花, 等. 基于地理加权回归的青藏高原季节冻土区土壤有机碳空间分布研究[J]. 冰川冻土, 2020, 42(3): 1036-1045.
doi: 10.7522/j.issn.1000-0240.2020.0076 |
[ Wang Dong, Wu Xiaodong, Wei Xianhua, et al. Modelling soil organic carbon distribution in the seasonally frozen ground area on the Qinghai-Tibet Plateau using the geographically weighted regression. Journal of Glaciology and Geocryology, 2020, 42(3): 1036-1045. ]
doi: 10.7522/j.issn.1000-0240.2020.0076 |
|
[51] |
Liu S S, Yang Y H, Shen H H, et al. No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s[J]. Science of the Total Environment, 2018, 624: 1478-1487.
doi: 10.1016/j.scitotenv.2017.12.254 |
[52] |
Li F, Zang S Y, Liu Y N, et al. Effect of freezing-thawing cycle on soil active organic carbon fractions and enzyme activities in the wetland of Sanjiang Plain, Northeast China[J]. Wetlands, 2020, 40: 167-177.
doi: 10.1007/s13157-019-01164-9 |
[53] |
Chen S T, Huang Y, Zou J W, et al. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen[J]. Global and Planetary Change, 2013, 100: 99-108.
doi: 10.1016/j.gloplacha.2012.10.006 |
[54] |
Liao Q L, Zhang X H, Li Z P, et al. Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province[J]. Global Change Biology, 2009, 15(4): 861-875.
doi: 10.1111/j.1365-2486.2008.01792.x |
[55] |
Zou D F, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
doi: 10.5194/tc-11-2527-2017 |
[56] |
Li G J, Zhang M Y, Pei W S, et al. Changes in permafrost extent and active layer thickness variation in the Northern Hemisphere from 1969 to 2018[J]. Science of the Total Environment, 2022, 804: 150182. doi: 10.1016/j.scitotenv.2021.150182.
doi: 10.1016/j.scitotenv.2021.150182 |
|