PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (11): 2061-2072.doi: 10.18306/dlkxjz.2022.11.006
• Articles • Previous Articles Next Articles
ZHAO Xin1(), ZHAO Kaixu1, HUANG Xiaojun1,2,3,*(
)
Received:
2022-04-02
Revised:
2022-07-28
Online:
2022-11-28
Published:
2023-01-28
Contact:
HUANG Xiaojun
E-mail:realzhaox@163.com;huangxj@nwu.edu.cn
Supported by:
ZHAO Xin, ZHAO Kaixu, HUANG Xiaojun. Population exposure risk to urban extreme heat environment based on ECOSTRESS land surface temperature and mobile phone signaling data: A case study of Xi’an City[J].PROGRESS IN GEOGRAPHY, 2022, 41(11): 2061-2072.
[1] | IPCC. Climate Change 2021:The physical science basis. Contribution of working group I to the sixth assessment report[M]. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2021. |
[2] |
van der Walt A J, Fitchett J M. Exploring extreme warm temperature trends in South Africa: 1960-2016 [J]. Theoretical and Applied Climatology, 2021, 143: 1341-1360.
doi: 10.1007/s00704-020-03479-8 |
[3] |
Kousari M R, Ahani H, Hendi-Zadeh R. Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005[J]. Global and Planetary Change, 2013, 111: 97-110.
doi: 10.1016/j.gloplacha.2013.08.011 |
[4] |
Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305: 994-997.
doi: 10.1126/science.1098704 pmid: 15310900 |
[5] |
Anderson G B, Bell M L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities[J]. Environmental Health Perspectives, 2011, 119(2): 210-218.
doi: 10.1289/ehp.1002313 pmid: 21084239 |
[6] |
Lee W V. Historical global analysis of occurrences and human casualty of extreme temperature events (ETEs)[J]. Natural Hazards, 2014, 70(2): 1453-1505.
doi: 10.1007/s11069-013-0884-7 |
[7] |
Oleson K W, Monaghan A, Wilhelmi O, et al. Interactions between urbanization, heat stress, and climate change[J]. Climatic Change, 2015, 129: 525-541.
doi: 10.1007/s10584-013-0936-8 |
[8] | Shimpo A, Takemura K, Wakamatsu S, et al. Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan[J]. Scientific Online Letters on the Atmosphere, 2019, 15: 13-18. |
[9] |
Vautard R, Van Aalst M, Boucher O, et al. Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe[J]. Environmental Research Letters, 2020, 15(9): 094077. doi: 10.1088/1748-9326/aba3d4.
doi: 10.1088/1748-9326/aba3d4 |
[10] | Zhao Q, Guo Y M, Ye T T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study[J]. Lancet Planetary Health, 2021, 5(7): E415 -E425. doi: 10.1016/S2542-5196(21)00081-4. |
[11] | 任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40(7): 860-874. |
[ Ren Fumin, Gao Hui, Liu Lüliu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction. Meteorological Monthly, 2014, 40(7): 860-874. ] | |
[12] | 王灏晨, 路凤, 武继磊, 等. 中国气候变化对人口健康影响研究评述[J]. 科技导报, 2014, 32(S2): 109-116. |
[ Wang Haochen, Lu Feng, Wu Jilei, et al. Review on effects of climate change on population health in China. Science and Technology Review, 2014, 32(S2): 109-116. ] | |
[13] |
Heaviside C, Macintyre H, Vardoulakis S. The urban heat island: Implications for health in a changing environment[J]. Current Environmental Health Reports, 2017, 4(3): 296-305.
doi: 10.1007/s40572-017-0150-3 pmid: 28695487 |
[14] |
Tuholske C, Caylor K, Funk C, et al. Global urban population exposure to extreme heat[J]. PNAS, 2021, 118(41): e2024792118. doi: 10.1073/pnas.2024792118.
doi: 10.1073/pnas.2024792118 |
[15] |
谢铖, 黄波, 刘晓倩, 等. 基于手机定位数据的深圳市热浪人口暴露度分析[J]. 地理科学进展, 2020, 39(2): 231-242.
doi: 10.18306/dlkxjz.2020.02.005 |
[ Xie Cheng, Huang Bo, Liu Xiaoqian, et al. Population exposure to heatwaves in Shenzhen based on mobile phone location data. Progress in Geography, 2020, 39(2): 231-242. ]
doi: 10.18306/dlkxjz.2020.02.005 |
|
[16] | 同丽嘎, 李雪铭, 斯琴, 等. 高温热浪暴露风险评价: 以内蒙古包头市为例[J]. 干旱区地理, 2017, 40(2): 284-292. |
[ Tong Liga, Li Xueming, Si Qin, et al. Risk assessment of population exposure to heat wave: A case of Baotou City, Inner Mongolia, China. Arid Land Geography, 2017, 40(2): 284-292. ] | |
[17] |
Hu L Q, Wilhelmi O V, Uejio C. Assessment of heat exposure in cities: Combining the dynamics of temperature and population[J]. Science of the Total Environment, 2019, 655: 1-12. doi: 10.1016/j.scitotenv.2018.11.028.
doi: 10.1016/j.scitotenv.2018.11.028 |
[18] |
Yang J C, Hu L Q, Wang C H. Population dynamics modify urban residents' exposure to extreme temperatures across the United States[J]. Science Advances, 2019, 5(12). doi: 10.1126/sciadv.aay3452.
doi: 10.1126/sciadv.aay3452 |
[19] |
Jones B, Tebaldi C, O'neill B C, et al. Avoiding population exposure to heat-related extremes: Demographic change vs climate change[J]. Climatic Change, 2018, 146: 423-437.
doi: 10.1007/s10584-017-2133-7 |
[20] |
Liu Z, Anderson B, Yan K, et al. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change[J]. Scientific Reports, 2017, 7: 43909. doi: 10.1038/srep43909.
doi: 10.1038/srep43909 pmid: 28266567 |
[21] |
Zhang W, Li Y, Li Z, et al. Impacts of climate change, population growth, and urbanization on future population exposure to long-term temperature change during the warm season in China[J]. Environmental Science and Pollution Research, 2020, 27(8): 8481-8491.
doi: 10.1007/s11356-019-07238-9 |
[22] |
黄晓军, 王博, 刘萌萌, 等. 中国城市高温特征及社会脆弱性评价[J]. 地理研究, 2020, 39(7): 1534-1547.
doi: 10.11821/dlyj020190608 |
[ Huang Xiaojun, Wang Bo, Liu Mengmeng, et al. Characteristics of urban extreme heat and assessment of social vulnerability in China. Geographical Research, 2020, 39(7): 1534-1547. ]
doi: 10.11821/dlyj020190608 |
|
[23] |
谢盼, 王仰麟, 彭建, 等. 基于居民健康的城市高温热浪灾害脆弱性评价: 研究进展与框架[J]. 地理科学进展, 2015, 34(2): 165-174.
doi: 10.11820/dlkxjz.2015.02.005 |
[ Xie Pan, Wang Yanglin, Peng Jian, et al. Health related urban heat wave vulnerability assessment: Research progress and framework. Progress in Geography, 2015, 34(2): 165-174. ]
doi: 10.11820/dlkxjz.2015.02.005 |
|
[24] |
钟炜菁, 王德, 谢栋灿, 等. 上海市人口分布与空间活动的动态特征研究: 基于手机信令数据的探索[J]. 地理研究, 2017, 36(5): 972-984.
doi: 10.11821/dlyj201705013 |
[ Zhong Weijing, Wang De, Xie Dongcan, et al. Dynamic characteristics of Shanghai's population distribution using cell phone signaling data. Geographical Research, 2017, 36(5): 972-984. ]
doi: 10.11821/dlyj201705013 |
|
[25] |
陈丽娜, 吴升, 陈洁, 等. 基于手机定位数据的城市人口分布近实时预测[J]. 地球信息科学学报, 2018, 20(4): 523-531.
doi: 10.12082/dqxxkx.2018.170536 |
[ Chen Lina, Wu Sheng, Chen Jie, et al. The near-real-time prediction of urban population distributions based on mobile phone location data. Journal of Geo-information Science, 2018, 20(4): 523-531. ] | |
[26] | 海晓东, 刘云舒, 赵鹏军, 等. 基于手机信令数据的特大城市人口时空分布及其社会经济属性估测: 以北京市为例[J]. 北京大学学报(自然科学版), 2020, 56(3): 518-530. |
[ Hai Xiaodong, Liu Yunshu, Zhao Pengjun, et al. Using mobile phone data to estimate the temporal-spatial distribution and socioeconomic attributes of population in megacities: A case study of Beijing. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 518-530. ] | |
[27] |
陈倩, 丁明军, 杨续超, 等. 长江三角洲地区高温热浪人群健康风险评价[J]. 地球信息科学学报, 2017, 19(11): 1475-1484.
doi: 10.3724/SP.J.1047.2017.01475 |
[ Chen Qian, Ding Mingjun, Yang Xuchao, et al. Spatially explicit assessment of heat health risks using multi-source data: A case study of the Yangtze River Delta region, China. Journal of Geo-information Science, 2017, 19(11): 1475-1484. ] | |
[28] |
金星星, 祁新华, 陆玉麒, 等. 福建省高温热浪风险评估与空间分异研究[J]. 地球信息科学学报, 2018, 20(12): 1820-1829.
doi: 10.12082/dqxxkx.2018.180295. |
[ Jin Xingxing, Qi Xinhua, Lu Yuqi, et al. Evaluation and spatial differentiation of heat waves risk of Fujian Province. Journal of Geo-information Science, 2018, 20(12): 1820-1829. ] | |
[29] | 李佳雯, 杨彬云, 张曼玉, 等. 基于卫星遥感的长江三角洲地表热环境人口暴露空间特征[J]. 气象科技, 2020, 48(4): 590-599. |
[ Li Jiawen, Yang Binyun, Zhang Manyu, et al. Population exposure risk to land surface thermal envirionment over Yangtze River Delta based on multi-satellite data. Meteorological Science and Technology, 2020, 48(4): 590-599. ] | |
[30] |
Malakar N K, Hulley G C, Hook S J, et al. An operational land surface temperature product for landsat thermal data: Methodology and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5717-5735.
doi: 10.1109/TGRS.2018.2824828 |
[31] |
Hulley G C, Hook S J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1304-1315.
doi: 10.1109/TGRS.2010.2063034 |
[32] |
Hulley G, Shivers S, Wetherley E, et al. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California[J]. Remote Sensing, 2019, 11(18): 2136. doi: 10.3390/rs11182136.
doi: 10.3390/rs11182136 |
[33] |
Fisher J B, Lee B, Purdy A J, et al. ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station[J]. Water Resources Research, 2020, 56(4). doi: 10.1029/2019WR 026058.
doi: 10.1029/2019WR 026058 |
[34] |
Hook S J, Cawse-Nicholson K, Barsi J, et al. In-flight validation of the ECOSTRESS, Landsats 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1294-1302.
doi: 10.1109/TGRS.2019.2945701 |
[35] |
Silvestri M, Romaniello V, Hook S, et al. First comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over Italian volcanic and geothermal areas[J]. Remote Sensing, 2020, 12(1). doi: 10.1029/2019WR026058.
doi: 10.1029/2019WR026058 |
[36] |
Hulley G C, Göttsche F M, Rivera G, et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021. doi: 10.1109/TGRS.2021.3079879.
doi: 10.1109/TGRS.2021.3079879 |
[37] | 王念, 卢致宇, 徐建红, 等. 遥感反演和站点观测的地气温度分布特征差异[J]. 遥感学报, 2021, 25(8): 1848-1861. |
[ Wang Nian, Lu Zhiyu, Xu Jianhong, et al. Difference of temperature distribution characteristics based on remote sensing and meteorological station temperature data. National Remote Sensing Bulletin, 2021, 25(8): 1848-1861. ] | |
[38] |
王佳琳, 潘志华, 韩国琳, 等. 1961—2010年中国0 cm地温变化特征及其与气温变化的关系[J]. 资源科学, 2016, 38(9): 1733-1741.
doi: 10.18402/resci.2016.09.11 |
[ Wang Jialin, Pan Zhihua, Han Guolin, et al. Variation in ground temperature at a depth of 0 cm and the relationship with air temperature in China from 1961 to 2010. Resources Science, 2016, 38(9): 1733-1741. ]
doi: 10.18402/resci.2016.09.11 |
|
[39] |
Chang Y, Xiao J F, Li X X, et al. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data[J]. Remote Sensing of Environment, 2021, 263: 112544. doi: 10.1016/j.rse.2021.112544.
doi: 10.1016/j.rse.2021.112544 |
[40] |
Yin L, Lin N, Zhao Z Y. Mining daily activity chains from large-scale mobile phone location data[J]. Cities, 2021, 109: 103013. doi: 10.1016/j.cities.2020.103013.
doi: 10.1016/j.cities.2020.103013 |
[41] |
杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区城市热岛空间格局及影响因子多元建模[J]. 资源科学, 2019, 41(6): 1154-1166.
doi: 10.18402/resci.2019.06.14 |
[ Yang Zhiwei, Chen Yingbiao, Wu Zhifeng, et al. Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area. Resources Science, 2019, 41(6): 1154-1166. ]
doi: 10.18402/resci.2019.06.14 |
|
[42] |
熊鹰, 章芳. 基于多源数据的长沙市人居热环境效应及其影响因素分析[J]. 地理学报, 2020, 75(11): 2443-2458.
doi: 10.11821/dlxb202011013 |
[ Xiong Ying, Zhang Fang. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha City. Acta Geographica Sinica, 2020, 75(11): 2443-2458. ]
doi: 10.11821/dlxb202011013 |
|
[43] |
肖嘉玉, 何超, 慕航, 等. 中国城市空气污染时空分布格局和人口暴露风险[J]. 地理科学进展, 2021, 40(10): 1650-1663.
doi: 10.18306/dlkxjz.2021.10.004 |
[ Xiao Jiayu, He Chao, Mu Hang, et al. Spatiotemporal pattern and population exposure risks of air pollution in Chinese urban areas. Progress in Geography, 2021, 40(10): 1650-1663. ]
doi: 10.18306/dlkxjz.2021.10.004 |
|
[44] |
黄晓军, 祁明月, 赵凯旭, 等. 高温影响下西安市人口脆弱性评估及其空间分异[J]. 地理研究, 2021, 40(6): 1684-1700.
doi: 10.11821/dlyj020200922 |
[ Huang Xiaojun, Qi Mingyue, Zhao Kaixu, et al. Assessment of population vulnerability to heat stress and spatial differentiation in Xi'an. Geographical Research, 2021, 40(6): 1684-1700. ]
doi: 10.11821/dlyj020200922 |
|