PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (10): 1956-1968.doi: 10.18306/dlkxjz.2022.10.014
• Reviews • Previous Articles Next Articles
Received:
2022-02-28
Revised:
2022-08-13
Online:
2022-10-28
Published:
2022-12-28
Contact:
XIAO Yangmou
E-mail:xiebo317@whu.edu.cn;xiaoym@whu.edu.cn
Supported by:
XIE Bo, XIAO Yangmou. Progress of research on the mechanism of impact of urban road network characteristics on traffic accidents[J].PROGRESS IN GEOGRAPHY, 2022, 41(10): 1956-1968.
Tab.1
Traffic safety characteristics of road network patterns
道路网络布局形式 | 描述 | 交通安全特性 | 示意图 |
---|---|---|---|
格网型 | 路网呈现方格网式或近似方格网式,多为四岔路口 | 交通冲突点多,但有利于分散地区交通流量,减缓地区平均车速 | ![]() |
平行曲线型 | 由平行或近似平行的曲线道路组成,多为三岔路口 | 美学效果好,但曲线式的道路线型可能影响司机正常驾驶行为 | ![]() |
回路尽端型 | 由尽端路结合回路式路网构成,多呈树状、鱼骨状 | 穿越型交通流量较低,限制性的设计特征可以促进司机谨慎驾驶,但也可能影响司机正常驾驶行为 | ![]() |
融合网格型 | 格网作为路网的整体框架,内部应用限制通行的尽端式道路 | 居住单元内部非机动车网络连通性好,机动车网络连通性差,可以有效保障非机动车群体通行安全 | ![]() |
Tab.2
Characteristics of road network topology
道路网络拓扑特征 | 指标理论内涵 |
---|---|
接近中心性 (closeness centrality) | 网络中某一节点与其他节点的邻近程度[ |
中间中心性 (betweenness centrality) | 网络中某一节点或连线的重要性,反映了某条道路被穿行的可能性,即作为出行必经之路的潜力[ |
连通性(α指数) | 网络中实际圈数和最大圈数的比值,又称网状系数(meshedness coefficient),系数越大意味着路网的集聚性、成网性越强[ |
连通性(β指数) | 网络中连线数量与节点数量的比值,又称链节比(link-node ratio),用于度量道路网络中某一节点与其他节点的联系程度,即节点通达度[ |
连通性(γ指数) | 网络中的实际连线数与它可能存在的最大连线数之比[ |
绕行性(绕行率) | 网络中某对起止点之间的最短网络距离与欧几里得距离之比[ |
异配性 (disassortativity) | 一个节点倾向于与具有不同节点度的其他节点相连[ |
平均测地距离 (average geodesic distance) | 网络中任意两个节点之间最短连接路径的边数的平均值[ |
集聚系数 (clustering coefficient) | 网络中节点的邻点之间也互为邻点的比例,即小集团结构的完美程度[ |
富人俱乐部指数 (rich-club coefficient) | 道路网络中任一节点与富节点(节点度高的节点)连接的可能性[ |
[1] | World Health Organization. Global status report on road safety 2018[M]. Geneva, Switzerland: WHO Press, 2018: 4-6. |
[2] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020: 771. |
[National Bureau of Statistics. China statistical yearbook. Beijing, China: China Statistics Press, 2020: 771. ] | |
[3] | 国家卫生健康委员会. 中国卫生健康统计年鉴[M]. 北京: 中国协和医科大学出版社, 2019: 286. |
[National Health Commission. China health statistical yearbook. Beijing, China: Peking Union Medical College Press, 2019: 286. ] | |
[4] |
Naghavi M, Abajobir A A, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet, 2017, 390: 1151-1210.
doi: 10.1016/S0140-6736(17)32152-9 |
[5] | 王雪松, 游世凯. 基于多项罗吉特模型的路网形态判别[J]. 同济大学学报(自然科学版), 2014, 42(1): 64-70. |
[Wang Xuesong, You Shikai. Street patterns distinction based on logit model. Journal of Tongji University (Natural Science), 2014, 42(1): 64-70. ] | |
[6] | 徐向远, 石飞, 徐建刚, 等. 西方城市街道模式与居民出行方式关系探析[J]. 现代城市研究, 2015(9): 118-125. |
[Xu Xiangyuan, Shi Fei, Xu Jiangang, et al. A study of the relationship between western city street pattern and traffic mode. Modern Urban Research, 2015(9): 118-125. ] | |
[7] | Luca D A. The mathematics of urban morphology[M]// Boeing G. The morphology and circuity of walkable and drivable street networks. Basel, Switzerland: Birkhäuser, 2019: 271-287. |
[8] | Rifaat S, Tay R, Perez A, et al. Effects of neighborhood street patterns on traffic collision frequency[J]. Journal of Transportation Safety & Security, 2009, 1(4): 241-253. |
[9] |
Wang X S, Yuan J H, Schultz G G, et al. Investigating the safety impact of roadway network features of suburban arterials in Shanghai[J]. Accident Analysis & Prevention, 2018, 113: 137-148.
doi: 10.1016/j.aap.2018.01.029 |
[10] |
Rifaat S M, Tay R, de Barros A. Effect of street pattern on the severity of crashes involving vulnerable road users[J]. Accident Analysis & Prevention, 2011, 43(1): 276-283.
doi: 10.1016/j.aap.2010.08.024 |
[11] |
Marshall W E, Garrick N W. Does street network design affect traffic safety?[J]. Accident Analysis and Prevention, 2011, 43(3): 769-781.
doi: 10.1016/j.aap.2010.10.024 |
[12] |
Ewing R, Cervero R. Travel and the built environment[J]. Journal of the American Planning Association, 2010, 76(3): 265-294.
doi: 10.1080/01944361003766766 |
[13] |
Rifaat S M, Tay R. Effects of street patterns an injury risks in two-vehicle crashes[J]. Transportation Research Record, 2009, 2102(1): 61-67.
doi: 10.3141/2102-08 |
[14] |
Wang X S, Wu X W, Abdel-Aty M, et al. Investigation of road network features and safety performance[J]. Accident Analysis and Prevention, 2013, 56: 22-31.
doi: 10.1016/j.aap.2013.02.026 |
[15] |
Marshall W E, Garrick N W. Street network types and road safety: A study of 24 California cities[J]. Urban Design International, 2010, 15(3): 133-147.
doi: 10.1057/udi.2009.31 |
[16] |
Sun J, Lovegrove G. Comparing the road safety of neighbourhood development patterns: Traditional versus sustainable communities[J]. Canadian Journal of Civil Engineering, 2013, 40(1): 35-45.
doi: 10.1139/cjce-2012-0002 |
[17] |
Liu C H, Sharma A. Exploring spatio-temporal effects in traffic crash trend analysis[J]. Analytic Methods in Accident Research, 2017, 16: 104-116.
doi: 10.1016/j.amar.2017.09.002 |
[18] |
Adeyemi O J, Arif A A, Paul R. Exploring the relationship of rush hour period and fatal and non-fatal crash injuries in the U.S.: A systematic review and meta-analysis[J]. Accident Analysis & Prevention, 2021, 163: 106462. doi: 10.1016/j.aap.2021.106462.
doi: 10.1016/j.aap.2021.106462 |
[19] |
Zou W, Wang X K, Zhang D P. Truck crash severity in New York City: An investigation of the spatial and the time of day effects[J]. Accident Analysis and Prevention, 2017, 99: 249-261.
doi: 10.1016/j.aap.2016.11.024 |
[20] |
周素红, 郑重, 柳林. 城市交通消散期事故高峰现象及成因[J]. 地理科学, 2012, 32(6): 649-657.
doi: 10.13249/j.cnki.sgs.2012.06.649 |
[Zhou Suhong, Zheng Zhong, Liu Lin. Spatio-Temporal analysis of peak traffic accidents in the city of Huizhou. Scientia Geographica Sinica, 2012, 32(6): 649-657. ]
doi: 10.13249/j.cnki.sgs.2012.06.649 |
|
[21] |
Zeng Q, Huang H L. Bayesian spatial joint modeling of traffic crashes on an urban road network[J]. Accident Analysis & Prevention, 2014, 67: 105-112.
doi: 10.1016/j.aap.2014.02.018 |
[22] |
Marshall W E, Coppola N, Golombek Y. Urban clear zones, street trees, and road safety[J]. Research in Transportation Business and Management, 2018, 29: 136-143.
doi: 10.1016/j.rtbm.2018.09.003 |
[23] |
Saha D, Dumbaugh E, Merlin L A. A conceptual framework to understand the role of built environment on traffic safety[J]. Journal of Safety Research, 2020, 75: 41-50.
doi: 10.1016/j.jsr.2020.07.004 pmid: 33334491 |
[24] |
Azimian A, Dimitra Pyrialakou V, Lavrenz S, et al. Exploring the effects of area-level factors on traffic crash frequency by severity using multivariate space-time models[J]. Analytic Methods in Accident Research, 2021, 31: 100163. doi: 10.1016/j.amar.2021.100163.
doi: 10.1016/j.amar.2021.100163 |
[25] |
柳林, 宋广文, 周素红, 等. 城市空间结构对惠州市中心城区交通事故影响的时间差异分析[J]. 地理科学, 2015, 35(1): 75-83.
doi: 10.13249/j.cnki.sgs.2015.01.75 |
[Liu Lin, Song Guangwen, Zhou Suhong, et al. Temporally impact of urban structure on city traffic accidents in Huizhou. Scientia Geographica Sinica, 2015, 35(1): 75-83. ]
doi: 10.13249/j.cnki.sgs.2015.01.75 |
|
[26] |
Greenwald M J. The relationship between land use and intrazonal trip making behaviors: Evidence and implications[J]. Transportation Research Part D: Transport and Environment, 2006, 11(6): 432-446.
doi: 10.1016/j.trd.2006.09.003 |
[27] |
van Acker V, van Wee B, Witlox F. When transport geography meets social psychology: Toward a conceptual model of travel behaviour[J]. Transport Reviews, 2010, 30(2): 219-240.
doi: 10.1080/01441640902943453 |
[28] | 曹新宇. 社区建成环境和交通行为研究回顾与展望:以美国为鉴[J]. 国际城市规划, 2015, 30(4): 46-52. |
[Cao Xinyu.Examining the relationship between neighborhood built environment and travel behavior: A review from the US perspective. Urban Planning International, 2015, 30(4): 46-52. ] | |
[29] |
Hanson C S, Noland R B, Brown C. The severity of pedestrian crashes: An analysis using Google Street View imagery[J]. Journal of Transport Geography, 2013, 33: 42-53.
doi: 10.1016/j.jtrangeo.2013.09.002 |
[30] |
Cantillo V, Márquez L, Díaz C J. An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia[J]. Accident Analysis & Prevention, 2020, 146: 105749. doi: 10.1016/j.aap.2020.105749.
doi: 10.1016/j.aap.2020.105749 |
[31] |
Wang X S, Zhou Q Y, Yang J G, et al. Macro-level traffic safety analysis in Shanghai, China[J]. Accident Analysis & Prevention, 2019, 125: 249-256.
doi: 10.1016/j.aap.2019.02.014 |
[32] | Chen P, Zhou J P. Effects of the built environment on automobile-involved pedestrian crash frequency and risk[J]. Journal of Transport & Health, 2016, 3(4): 448-456. |
[33] |
Ewing R, Hamidi S, Grace J B. Urban sprawl as a risk factor in motor vehicle crashes[J]. Urban Studies, 2016, 53(2): 247-266.
doi: 10.1177/0042098014562331 |
[34] |
Chen P, Shen Q. Built environment effects on cyclist injury severity in automobile-involved bicycle crashes[J]. Accident Analysis & Prevention, 2016, 86: 239-246.
doi: 10.1016/j.aap.2015.11.002 |
[35] |
Ewing R, Dumbaugh E. The built environment and traffic safety: A review of empirical evidence[J]. Journal of Planning Literature, 2009, 23(4): 347-367.
doi: 10.1177/0885412209335553 |
[36] | Saha D, Dumbaugh E. Use of a model-based gradient boosting framework to assess spatial and non-linear effects of variables on pedestrian crash frequency at macro-level[J]. Journal of Transportation Safety & Security, 2022, 14(8): 1419-1450. |
[37] |
Ding C, Chen P, Jiao J F. Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach[J]. Accident Analysis & Prevention, 2018, 112: 116-126.
doi: 10.1016/j.aap.2017.12.026 |
[38] |
An R, Tong Z M, Ding Y M, et al. Examining non-linear built environment effects on injurious traffic collisions: A gradient boosting decision tree analysis[J]. Journal of Transport & Health, 2022, 24: 101296. doi: 10.1016/j.jth.2021.101296.
doi: 10.1016/j.jth.2021.101296 |
[39] | 谢波, 庞哲, 安子豪. 基于交通安全视角的城市土地混合利用模式研究[J]. 城市发展研究, 2020, 27(8): 19-24. |
[Xie Bo, Pang Zhe, An Zihao. Exploring the mixed land use pattern from the perspective of transportation safety. Urban Development Studies, 2020, 27(8): 19-24. ] | |
[40] | 王成, 谢波. 土地利用视角下城市交通事故驱动机理的研究进展[J]. 地理科学进展, 2020, 39(9): 1597-1606. |
[Wang Cheng, Xie Bo. Research progress on the driving mechanism of traffic accidents from the perspective of land use. Progress in Geography, 2020, 39(9): 1597-1606. ] | |
[41] |
Najaf P, Thill J C, Zhang W J, et al. City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects[J]. Journal of Transport Geography, 2018, 69: 257-270.
doi: 10.1016/j.jtrangeo.2018.05.003 |
[42] |
Harvey C, Aultman-Hall L. Urban streetscape design and crash severity[J]. Transportation Research Record, 2015, 2500(1): 1-8.
doi: 10.3141/2500-01 |
[43] |
Ukkusuri S, Miranda-Moreno L F, Ramadurai G, et al. The role of built environment on pedestrian crash frequency[J]. Safety Science, 2012, 50(4): 1141-1151.
doi: 10.1016/j.ssci.2011.09.012 |
[44] |
Li J, Wang X S. Safety analysis of urban arterials at the meso level[J]. Accident Analysis & Prevention, 2017, 108: 100-111.
doi: 10.1016/j.aap.2017.08.023 |
[45] |
Masoud A R, Lee A, Faghihi F, et al. Building sustainably safe and healthy communities with the Fused Grid development layout[J]. Canadian Journal of Civil Engineering, 2015, 42(12): 1063-1072.
doi: 10.1139/cjce-2015-0086 |
[46] |
Freeman L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3): 215-239.
doi: 10.1016/0378-8733(78)90021-7 |
[47] | 宋小冬, 陶颖, 潘洁雯, 等. 城市街道网络分析方法比较研究: 以Space Syntax、sDNA和UNA为例[J]. 城市规划学刊, 2020(2): 19-24. |
[Song Xiaodong, Tao Ying, Pan Jiewen, et al. A comparison of analytical methods for urban street network: Taking space syntax, sDNA and UNA as examples. Urban Planning Forum, 2020(2): 19-24. ] | |
[48] | 高洁. 交通运输网络连通性评价指标分析[J]. 交通运输工程与信息学报, 2010, 8(1): 35-38. |
[Gao Jie. Analysis of transportation network connectivity evaluation index. Journal of Transportation Engineering and Information, 2010, 8(1): 35-38. ] | |
[49] |
Sarkar C, Webster C, Kumari S. Street morphology and severity of road casualties: A 5-year study of Greater London[J]. International Journal of Sustainable Transportation, 2018, 12(7): 510-525.
doi: 10.1080/15568318.2017.1402972 |
[50] |
Newman M E J. Assortative mixing in networks[J]. Physical Review Letters, 2002, 89: 208701. doi: 10.48550/arXiv.cond-mat/0205405.
doi: 10.48550/arXiv.cond-mat/0205405 |
[51] |
Hu H B, Wang X F. Unified index to quantifying heterogeneity of complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(14): 3769-3780.
doi: 10.1016/j.physa.2008.01.113 |
[52] |
Zhang Y Y, Bigham J, Ragland D, et al. Investigating the associations between road network structure and non-motorist accidents[J]. Journal of Transport Geography, 2015, 42: 34-47.
doi: 10.1016/j.jtrangeo.2014.10.010 |
[53] |
莫辉辉, 王姣娥, 金凤君. 交通运输网络的复杂性研究[J]. 地理科学进展, 2008, 27(6): 112-120.
doi: 10.11820/dlkxjz.2008.06.016 |
[Mo Huihui, Wang Jiao'e, Jin Fengjun. Complexity perspectives on transportation network. Progress in Geography, 2008, 27(6): 112-120. ]
doi: 10.11820/dlkxjz.2008.06.016 |
|
[54] | 徐凤, 朱金福, 杨文东. 复杂网络在交通运输网络中的应用研究综述[J]. 复杂系统与复杂性科学, 2013, 10(1): 18-25. |
[Xu Feng, Zhu Jinfu, Yang Wendong. The complex networks applications in transportation networks: A survey. Complex Systems and Complexity Science, 2013, 10(1): 18-25. ] | |
[55] |
Zhou S, Mondragon R J. The rich-club phenomenon in the Internet topology[J]. IEEE Communications Letters, 2004, 8(3): 180-182.
doi: 10.1109/LCOMM.2004.823426 |
[56] |
Guo Q, Pei X, Yao D Y, et al. Role of street patterns in zone-based traffic safety analysis[J]. Journal of Central South University, 2015, 22(6): 2416-2422.
doi: 10.1007/s11771-015-2768-3 |
[57] | 龙雪琴, 关宏志. 基于交通安全的城市路网结构优化方法[J]. 公路交通科技, 2012, 29(4): 107-113. |
[Long Xueqin, Guan Hongzhi. Urban road network structure optimization method based on traffic safety. Journal of Highway and Transportation Research and Development, 2012, 29(4): 107-113. ] | |
[58] |
Kamel M B, Sayed T. The impact of bike network indicators on bike kilometers traveled and bike safety: A network theory approach[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(7): 2055-2072.
doi: 10.1177/2399808320964469 |
[59] |
Moeinaddini M, Asadi-Shekari Z, Zaly Shah M. The relationship between urban street networks and the number of transport fatalities at the city level[J]. Safety Science, 2014, 62: 114-120.
doi: 10.1016/j.ssci.2013.08.015 |
[60] | 申凤, 李亮, 翟辉. “密路网,小街区”模式的路网规划与道路设计: 以昆明呈贡新区核心区规划为例[J]. 城市规划, 2016, 40(5): 43-53. |
[Shen Feng, Li Liang, Zhai Hui. Road network planning and street design based on the planning pattern of "high street density, small block size": A case study of central district planning in Chenggong new town of Kunming. City Planning Review, 2016, 40(5): 43-53. ] | |
[61] |
Masoud A R, Idris A O, Lovegrove G. Modelling the impact of fused grid network design on mode choice behaviour[J]. Journal of Transport & Health, 2019, 15: 100627. doi: 10.1016/j.jth.2019.100627.
doi: 10.1016/j.jth.2019.100627 |
[62] | 蔡军, 路晓东. 路网密度对城市公共汽车交通发展的影响[J]. 城市交通, 2016, 14(2): 1-9, 58. |
[Cai Jun, Lu Xiaodong. Impact of road network density on promoting bus traffic development. Urban Transport of China, 2016, 14(2): 1-9, 58. ] | |
[63] |
Marshall W E, Garrick N W. Effect of street network design on walking and biking[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2198(1): 103-115.
doi: 10.3141/2198-12 |
[64] |
Rifaat S M, Pasha M, Tay R, et al. Effect of community road infrastructure, socio-demographic and street pattern in promoting walking as sustainable transportation mode[J]. The Open Transportation Journal, 2019, 13(1): 25-34.
doi: 10.2174/1874447801913010025 |
[65] |
Berrigan D, Pickle L W, Dill J. Associations between street connectivity and active transportation[J]. International Journal of Health Geographics, 2010, 9(1): 20. doi: 10.1186/1476-072X-9-20.
doi: 10.1186/1476-072X-9-20 |
[66] | 蒋应红, 沈雷洪, 刘宙, 等. 街道机动车车道宽度缩窄的合理取值研究[J]. 城市规划, 2022, 46(2): 62-70. |
[Jiang Yinghong, Shen Leihong, Liu Zhou, et al. A study on the reasonable value for narrowing the width of motor vehicle lane. City Planning Review, 2022, 46(2): 62-70. ] | |
[67] |
Parthasarathi P. Network structure and metropolitan mobility[J]. Journal of Transport and Land Use, 2014, 7(2): 153-170.
doi: 10.5198/jtlu.v7i2.494 |
[68] |
Pasha M, Rifaat S M, Tay R, et al. Effects of street pattern, traffic, road infrastructure, socioeconomic and demographic characteristics on public transit ridership[J]. KSCE Journal of Civil Engineering, 2016, 20(3): 1017-1022.
doi: 10.1007/s12205-016-0693-6 |
[69] |
Huang J, Levinson D M. Circuity in urban transit networks[J]. Journal of Transport Geography, 2015, 48: 145-153.
doi: 10.1016/j.jtrangeo.2015.09.004 |
[70] | 车冠琼, 仇保兴, 杨滔. 街道网络结构与土地利用布局对人流分布的影响[J]. 西部人居环境学刊, 2021, 36(2): 87-94. |
[Che Guanqiong, Qiu Baoxing, Yang Tao. The effects of street network structure and land use distribution on pedestrian flow. Journal of Human Settlements in West China, 2021, 36(2): 87-94. ] | |
[71] |
Guan X D, Wang D G, Cao X J. The role of residential self-selection in land use-travel research: A review of recent findings[J]. Transport Reviews, 2020, 40(3): 267-287.
doi: 10.1080/01441647.2019.1692965 |
[72] |
Lin T, Wang D G, Guan X D. The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?[J]. Journal of Transport Geography, 2017, 65: 111-122.
doi: 10.1016/j.jtrangeo.2017.10.004 |
[73] |
van Wee B. Self-selection: A key to a better understanding of location choices, Travel behaviour and transport externalities?[J]. Transport Reviews, 2009, 29(3): 279-292.
doi: 10.1080/01441640902752961 |
[74] |
Cao X Y, Mokhtarian P L, Handy S L. Examining the impacts of residential self-selection on travel behaviour: A focus on empirical findings[J]. Transport Reviews, 2009, 29(3): 359-395.
doi: 10.1080/01441640802539195 |
[75] |
Deng Y L, Zhao P J. Quantifying residential self-selection effects on commuting mode choice: A natural experiment[J]. Transportation Research Part D: Transport and Environment, 2022, 104: 103197. doi: 10.1016/j.trd.2022.
doi: 10.1016/j.trd.2022 |
[76] |
Wang D G, Lin T. Built environment, travel behavior, and residential self-selection: A study based on panel data from Beijing, China[J]. Transportation, 2019, 46(1): 51-74.
doi: 10.1007/s11116-017-9783-1 |
|