PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (10): 1868-1881.doi: 10.18306/dlkxjz.2022.10.008
• Articles • Previous Articles Next Articles
HE Peiting(), LIU Danyuan, LU Siyan, HE Xiaoyu, LI Hua, YANG Liu, LIN Jinyao*(
)
Received:
2022-02-21
Revised:
2022-07-03
Online:
2022-10-28
Published:
2022-12-28
Contact:
LIN Jinyao
E-mail:1901500026@e.gzhu.edu.cn;ljy2012@gzhu.edu.cn
Supported by:
HE Peiting, LIU Danyuan, LU Siyan, HE Xiaoyu, LI Hua, YANG Liu, LIN Jinyao. Influencing factors of waterlogging and waterlogging risks in Shenzhen City based on MAXENT[J].PROGRESS IN GEOGRAPHY, 2022, 41(10): 1868-1881.
Tab.1
Details of the spatial data used in this study
一级数据 | 二级数据 | 详细信息 | 来源 |
---|---|---|---|
内涝点 | — | — | 深圳市水务局、深圳市气象局、深圳市海绵城市建设规划图集 |
建筑信息 | 建筑指标 | 建筑位置、楼层数 | 高德地图 |
土地利用 | 不透水面比例 | 30 m分辨率 | 清华大学 |
绿地比例 | |||
水体比例 | |||
DEM | 高程 | 30 m分辨率 | 地理空间数据云平台 |
坡度 | |||
地表起伏度 | |||
地面粗糙度 | |||
人口 | 人口密度 | 100 m分辨率 | WorldPop |
NDVI | — | 1000 m分辨率 | 中国科学院资源环境科学与数据中心 |
暴雨 | 暴雨次数、暴雨峰值雨量 | 1000 m分辨率 | 中国科学数据网 |
立交桥 | 离立交桥距离 | — | 高德地图 |
Tab.2
Potential three-dimensional influencing factors of waterlogging
因子 | 公式 | 描述 |
---|---|---|
建筑物密度(DB) | — | — |
平均建筑高度(MBH) | | — |
建筑高度标准差(SDBH) | | 反映建筑高度的分散和变化程度 |
平均建筑体积(MBV) | | — |
建筑体积标准差(SDBV) | | 反映建筑体积的分散和变化程度 |
容积率(FAR) | | 总建筑面积与所在地块面积之比 |
建筑覆盖率(BCR) | | 建筑覆盖面积与所在地块面积之比 |
建筑形状系数(BSC) | | 建筑表面积与体积之比,是决定热损失和增益的重要因素 |
建筑拥挤度(BCD) | | 所有建筑体积占城市体积百分比的总和 |
[1] |
Lin L, Wu Z N, Liang Q H. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework[J]. Natural Hazards, 2019, 97(2): 455-475.
doi: 10.1007/s11069-019-03615-2 |
[2] | 薛丰昌, 朱一晗, 顾人颖, 等. Floodarea模型的城市内涝可视化数值模拟[J]. 测绘科学, 2020, 45(8): 181-187, 198. |
[Xue Fengchang, Zhu Yihan, Gu Renying, et al. Visual numerical simulation of urban waterlogging based on Floodarea model. Science of Surveying and Mapping, 2020, 45(8): 181-187, 198. ] | |
[3] |
Bertilsson L, Wiklund K, de Moura Tebaldi I, et al. Urban flood resilience: A multi-criteria index to integrate flood resilience into urban planning[J]. Journal of Hydrology, 2019, 573: 970-982.
doi: 10.1016/j.jhydrol.2018.06.052 |
[4] |
胡文燕, 李梦雅, 王军, 等. 暴雨内涝影响下的城市道路交通拥挤特征识别[J]. 地理科学进展, 2018, 37(6): 772-780.
doi: 10.18306/dlkxjz.2018.06.004 |
[Hu Wenyan, Li Mengya, Wang Jun, et al. Urban traffic congestion caused by rainstorms and innudation. Progress in Geography, 2018, 37(6): 772-780. ]
doi: 10.18306/dlkxjz.2018.06.004 |
|
[5] | 王志寰, 朱立俊, 王建中, 等. 长江倒灌鄱阳湖原因及发生条件的量化指标[J]. 水科学进展, 2020, 31(2): 203-213. |
[Wang Zhihuan, Zhu Lijun, Wang Jianzhong, et al. Reverse flow from Yangtze River to Poyang Lake: Causes and occurrence conditions quantization index. Advances in Water Science, 2020, 31(2): 203-213. ] | |
[6] | 赵广英, 李晨, 刘淑娟. 城市内涝问题的规划改善途径研究: 以湖南省为例[J]. 现代城市研究, 2016(12): 51-61. |
[Zhao Guangying, Li Chen, Liu Shujuan. Urban waterlogging planning research of improving ways: A case study of Hunan Province. Modern Urban Research, 2016(12): 51-61. ] | |
[7] |
黄华兵, 王先伟, 柳林. 城市暴雨内涝综述特征、机理、数据与方法[J]. 地理科学进展, 2021, 40(6): 1048-1059.
doi: 10.18306/dlkxjz.2021.06.014 |
[Huang Huabing, Wang Xianwei, Liu Lin. A review on urban pluvial floods: Characteristics, mechanisms, data, and research methods. Progress in Geography, 2021, 40(6): 1048-1059. ]
doi: 10.18306/dlkxjz.2021.06.014 |
|
[8] | 唐钰嫣, 潘耀忠, 范津津, 等. 土地利用景观格局对城市内涝灾害风险的影响研究[J]. 水利水电技术(中英文), 2021, 52(12): 1-11. |
[Tang Yuyan, Pan Yaozhong, Fan Jinjin, et al. The influence of landscape pattern on the risk of urban waterlogging disaster. Water Resources and Hydropower Engineering, 2021, 52(12): 1-11. ] | |
[9] |
赵丽元, 韦佳伶. 城市建设对暴雨内涝空间分布的影响研究: 以武汉市主城区为例[J]. 地理科学进展, 2020, 39(11): 1898-1908.
doi: 10.18306/dlkxjz.2020.11.010 |
[Zhao Liyuan, Wei Jialing. Impact of urban development on the risk of flooding: A case study of Wuhan City, China. Progress in Geography, 2020, 39(11): 1898-1908. ]
doi: 10.18306/dlkxjz.2020.11.010 |
|
[10] | 李孝永, 匡文慧. 北京城市土地利用/覆盖变化及其对雨洪调节服务的影响[J]. 生态学报, 2020, 40(16): 5525-5533. |
[Li Xiaoyong, Kuang Wenhui. Urban land use/cover change and its impact on urban flood regulation ecosystem service in Beijing. Acta Ecologica Sinica, 2020, 40(16): 5525-5533. ] | |
[11] |
梁志承, 赵耀龙, 付迎春. 耦合蚁群算法和SCS-CN水文模型的城市不透水面空间格局优化[J]. 地球信息科学学报, 2017, 19(10): 1315-1326.
doi: 10.3724/SP.J.1047.2017.01315 |
[Liang Zhicheng, Zhao Yaolong, Fu Yingchun. Optimization of spatial pattern of urban imperviousness based on the integration of SCS-CN hydrological model and the ant colony algorithm. Journal of Geo-information Science, 2017, 19(10): 1315-1326. ] | |
[12] | 张华, 尹占娥, 殷杰, 等. 基于土地利用的城市暴雨内涝灾害脆弱性评估: 以上海浦东新区为例[J]. 上海师范大学学报(自然科学版), 2011, 40(4): 427-434. |
[Zhang Hua, Yin Zhane, Yin Jie, et al. Vulnerability assessment of urban rainstorm water-logging in pudong of Shanghai in terms of land use. Journal of Shanghai Normal University (Natural Sciences), 2011, 40(4): 427-434. ] | |
[13] |
李彬烨, 赵耀龙, 付迎春. 广州城市暴雨内涝时空演变及建设用地扩张的影响[J]. 地球信息科学学报, 2015, 17(4): 445-450.
doi: 10.3724/SP.J.1047.2015.00445 |
[Li Binye, Zhao Yaolong, Fu Yingchun. Spatio-temporal characteristics of urban storm waterlogging in Guangzhou and the impact of urban growth. Journal of Geo-information Science, 2015, 17(4): 445-450. ] | |
[14] | 叶超凡, 张一驰, 程维明, 等. 北京市区快速城市化进程中的内涝现状及成因分析[J]. 中国防汛抗旱, 2018, 28(2): 19-25. |
[Ye Chaofan, Zhang Yichi, Cheng Weiming, et al. Analysis on urban pluvial floods and causes during rapid development in Beijing. China Flood & Drought Management, 2018, 28(2): 19-25. ] | |
[15] |
吴健生, 张朴华. 城市景观格局对城市内涝的影响研究: 以深圳市为例[J]. 地理学报, 2017, 72(3): 444-456.
doi: 10.11821/dlxb201703007 |
[Wu Jiansheng, Zhang Puhua. The effect of urban landscape pattern on urban waterlogging. Acta Geographica Sinica, 2017, 72(3): 444-456. ]
doi: 10.11821/dlxb201703007 |
|
[16] |
Bautista S, Mayor Á G, Bourakhouadar J, et al. Plant spatial pattern predicts hillslope semiarid runoff and erosion in a Mediterranean landscape[J]. Ecosystems, 2007, 10(6): 987-998.
doi: 10.1007/s10021-007-9074-3 |
[17] | 李柳华, 刘小平, 欧金沛, 等. 基于随机森林模型的城市扩张三维特征时空变化及机制分析[J]. 地理与地理信息科学, 2019, 35(2): 53-60. |
[Li Liuhua, Liu Xiaoping, Ou Jinpei, et al. Spatio-temporal changes and mechanism analysis of urban 3D expansion based on Random Forest Model. Geography and Geo-Information Science, 2019, 35(2): 53-60. ] | |
[18] | 于晓雨, 许刚, 刘樾, 等. 长江三角洲地区城市建筑三维形态对地表热环境的影响[J]. 中国环境科学, 2021, 41(12): 5806-5816. |
[Yu Xiaoyu, Xu Gang, Liu Yue, et al. Influences of 3D features of buildings on land surface temperature: A case study in the Yangtze River Delta urban agglomeration. China Environmental Science, 2021, 41(12): 5806-5816. ] | |
[19] |
Xu Y, Liu M, Hu Y M, et al. Analysis of three-dimensional space expansion characteristics in old industrial area renewal using GIS and Barista: A case study of Tiexi District, Shenyang, China[J]. Sustainability, 2019, 11(7): 1860. doi: 10.3390/su11071860.
doi: 10.3390/su11071860 |
[20] | 陈探, 刘淼, 胡远满, 等. 沈阳城市三维景观空间格局分异特征[J]. 生态学杂志, 2015, 34(9): 2621-2627. |
[Chen Tan, Liu Miao, Hu Yuanman, et al. Differentiation characteristics of three-dimensional landscape pattern in Shenyang. Chinese Journal of Ecology, 2015, 34(9): 2621-2627. ] | |
[21] |
乔伟峰, 刘彦随, 王亚华, 等. 2000年以来南京城市三维空间扩展特征[J]. 地理研究, 2015, 34(4): 666-676.
doi: 10.11821/dlyj201504006 |
[Qiao Weifeng, Liu Yansui, Wang Yahua, et al. Analysis on the characteristics of three-dimensional urban space expansion in Nanjing since 2000. Geographical Research, 2015, 34(4): 666-676. ]
doi: 10.11821/dlyj201504006 |
|
[22] |
杨俊, 国安东, 席建超, 等. 城市三维景观格局时空分异特征研究: 以大连市中山区为例[J]. 地理学报, 2017, 72(4): 646-656.
doi: 10.11821/dlxb201704007 |
[Yang Jun, Guo Andong, Xi Jianchao, et al. Spatial-temporal differentiation of three-dimensional urban landscape pattern: A case study of Zhongshan District in Dalian. Acta Geographica Sinica, 2017, 72(4): 646-656. ]
doi: 10.11821/dlxb201704007 |
|
[23] |
刘勇, 张韶月, 柳林, 等. 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 2015, 34(4): 494-504.
doi: 10.11820/dlkxjz.2015.04.011 |
[Liu Yong, Zhang Shaoyue, Liu Lin, et al. Research on urban flood simulation: A review from the smart city perspective. Progress in Geography, 2015, 34(4): 494-504. ]
doi: 10.11820/dlkxjz.2015.04.011 |
|
[24] |
张会, 李铖, 程炯, 等. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190.
doi: 10.18306/dlkxjz.2019.02.003 |
[Zhang Hui, Li Cheng, Cheng Jiong, et al. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability. Progress in Geography, 2019, 38(2): 175-190. ]
doi: 10.18306/dlkxjz.2019.02.003 |
|
[25] |
Tang X Z, Shu Y Q, Lian Y Q, et al. A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier[J]. Science of the Total Environment, 2018, 630: 264-274.
doi: 10.1016/j.scitotenv.2018.02.172 |
[26] | 张菲菲, 谭琳珊, 赵强强, 等. 基于水动力模型的城市内涝灾害研究: 以宁波市白鹤社区为例[J]. 自然灾害学报, 2021, 30(6): 209-218. |
[Zhang Feifei, Tan Linshan, Zhao Qiangqiang, et al. Research on urban waterlogging disaster based on hydrodynamic model: Take Baihe community in Ningbo City as an example. Journal of Natural Disasters, 2021, 30(6): 209-218. ] | |
[27] |
朱阿兴, 闾国年, 周成虎, 等. 地理相似性: 地理学的第三定律?[J]. 地球信息科学学报, 2020, 22(4): 673-679.
doi: 10.12082/dqxxkx.2020.200069 |
[Zhu Axing, Lv Guonian, Zhou Chenghu, et al. Geographic similarity: Third law of geography? Journal of Geo-information Science, 2020, 22(4): 673-679. ] | |
[28] | 吴小君, 方秀琴, 任立良, 等. 基于随机森林的山洪灾害风险评估: 以江西省为例[J]. 水土保持研究, 2018, 25(3): 142-149. |
[Wu Xiaojun, Fang Xiuqin, Ren Liliang, et al. Risk assessment of mountain torrents disaster based on Random Forest: A case study in Jiangxi Province. Research of Soil and Water Conservation, 2018, 25(3): 142-149. ] | |
[29] |
Phillips S J, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161-175.
doi: 10.1111/j.0906-7590.2008.5203.x |
[30] |
Yue Y J, Zhang P Y, Shang Y R. The potential global distribution and dynamics of wheat under multiple climate change scenarios[J]. Science of the Total Environment, 2019, 688: 1308-1318.
doi: 10.1016/j.scitotenv.2019.06.153 |
[31] |
Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.
doi: 10.1080/01431161.2012.748992 |
[32] |
Zhang P F, Hu Y M, Xiong Z P. Extraction of three-dimensional architectural data from QuickBird images[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(2): 409-416
doi: 10.1007/s12524-013-0315-y |
[33] | 何文文, 侯英姿. 多指标下大连市金普新区城市形态分析[J]. 国土与自然资源研究, 2017(6): 54-55. |
[He Wenwen, Hou Yingzi. The analysis of Jinpu new area in Dalian City by multicriteria. Territory & Natural Resources Study, 2017(6): 54-55. ] | |
[34] | 周伟奇, 田韫钰. 城市三维空间形态的热环境效应研究进展[J]. 生态学报, 2020, 40(2): 416-427. |
[Zhou Weiqi, Tian Yunyu. Effects of urban three-dimensional morphology on thermal environment: A review. Acta Ecologica Sinica, 2020, 40(2): 416-427. ] | |
[35] |
Tang R, Blangiardo M, Gulliver J. Using building heights and street configuration to enhance intraurban PM10, NO(X), and NO2 land use regression models[J]. Environmental Science & Technology, 2013, 47(20): 11643-11650.
doi: 10.1021/es402156g |
[36] |
麦鉴锋, 冼宇阳, 刘桂林. 气候变化情景下广东省降雨诱发型滑坡灾害潜在分布及预测[J]. 地球信息科学学报, 2021, 23(11): 2042-2054.
doi: 10.12082/dqxxkx.2021.210182 |
[Mai Jianfeng, Xian Yu-yang, Liu Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province (China) using MaxEnt Model under climate changes scenarios. Journal of Geo-information Science, 2021, 23(11): 2042-2054. ] | |
[37] |
Jaynes E T. On the rationale of maximum entropy methods[J]. Proceedings of the IEEE, 1982, 70(9): 939-952.
doi: 10.1109/PROC.1982.12425 |
[38] | 宋明顺, 杨铭, 方兴华. 基于最大熵分布的控制图改进与评价研究[J]. 中国管理科学, 2019, 27(12): 208-216. |
[Song Mingshun, Yang Ming, Fang Xinghua. Improved control charts based on maximum entropy and their evaluations. Chinese Journal of Management Science, 2019, 27(12): 208-216. ] | |
[39] |
Soilhi Z, Sayari N, Benalouache N, et al. Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model[J]. Ecological Informatics, 2022, 68: 101533. doi: 10.1016/j.ecoinf.2021.101533.
doi: 10.1016/j.ecoinf.2021.101533 |
[40] | 李航. 统计学习方法[M]. 2版. 北京: 清华大学出版社, 2019: 80-83. |
[Li Hang. Statistical methods. 2nd ed. Beijing, China: Tsinghua University Press, 2019: 80-83. ] | |
[41] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[42] | 郭玉宝, 池天河, 彭玲, 等. 利用随机森林的高分一号遥感数据进行城市用地分类[J]. 测绘通报, 2016(5): 73-76. |
[Guo Yubao, Chi Tianhe, Peng Ling, et al. Classification of GF-1 remote sensing image based on Random Forests for urban land-use. Bulletin of Surveying and Mapping, 2016(5): 73-76. ] | |
[43] | 任平, 吴涛, 周介铭. 基于GIS和空间自相关模型的耕地空间分布格局及变化特征分析: 以成都市龙泉驿区为例[J]. 中国生态农业学报, 2016, 24(3): 325-334. |
[Ren Ping, Wu Tao, Zhou Jieming. Analysis of spatial distribution pattern and evolutionary characteristics of cultivated lands based on spatial autocorrelation model and GIS platform: A case study of Longquanyi District, Chengdu, China. Chinese Journal of Eco-Agriculture, 2016, 24(3): 325-334. ] | |
[44] | 颜明艳, 李琼珍, 宋洁, 等. 基于MAXENT模型评估北部湾潮间带中国鲎和圆尾鲎稚鲎的潜在地理分布及种群保育对策[J]. 生态学报, 2019, 39(9): 3100-3109. |
[Yan Mingyan, Li Qiongzhen, Song Jie, et al. Prediction of potential distribution areas of Chinese horseshoe crab and mangrove horseshoe crab in the Beibu Gulf of Guangxi based on MAXENT model and their population conservation strategies. Acta Ecologica Sinica, 2019, 39(9): 3100-3109. ] | |
[45] | 曹倩, 高庆波, 郭万军, 等. 基于MaxEnt模拟人类活动与环境因子对青藏高原特有植物祁连獐牙菜潜在分布的影响[J]. 植物科学学报, 2021, 39(1): 22-31. |
[Cao Qian, Gao Qingbo, Guo Wanjun, et al. Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk., an endemic plant in Qing-Tibetan Plateau, using MaxEnt. Plant Science Journal, 2021, 39(1): 22-31. ] | |
[46] | 李安, 李良涛, 高萌萌, 等. 基于MaxEnt模型和气候变化情景入侵种黄顶菊在中国的分布区预测[J]. 农学学报, 2020, 10(1): 60-67, 76. |
[Li An, Li Liangtao, Gao Mengmeng, et al. Distribution prediction of invasive species flaveria bidentis in China: Based on MaxEnt model and climate change scenario. Journal of Agriculture, 2020, 10(1): 60-67, 76. ] | |
[47] | 张海行, 张伟, 杨文辉, 等. 基于水力排水模型的宁波海绵试点区内涝风险评估[J]. 中国给水排水, 2020, 36(12): 8-13. |
[Zhang Haixing, Zhang Wei, Yang Wenhui, et al. Assessment of urban waterlogging risk in Ningbo sponge city pilot area based on hydraulic drainage model. China Water & Wastewater, 2020, 36(12): 8-13. ] | |
[48] |
Lin J Y, He X Y, Lu S Y, et al. Investigating the influence of three-dimensional building configuration on urban pluvial flooding using random forest algorithm[J]. Environmental Research, 2021, 196: 110438. doi: 10.1016/j.envres.2020.110438.
doi: 10.1016/j.envres.2020.110438 |
[49] | Mojaddadi H, Pradhan B, Nampak H, et al. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS[J]. Geomatics, Natural Hazards & Risk, 2017, 8(2): 1080-1102. |
[50] | 赖成光, 陈晓宏, 赵仕威, 等. 基于随机森林的洪灾风险评价模型及其应用[J]. 水利学报, 2015, 46(1): 58-66. |
[Lai Chengguang, Chen Xiaohong, Zhao Shiwei, et al. A flood risk assessment model based on Random Forest and its application. Journal of Hydraulic Engineering, 2015, 46(1): 58-66. ] | |
[51] |
Tang X Z, Li J F, Liu W, et al. A method to increase the number of positive samples for machine learning-based urban waterlogging susceptibility assessments[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36: 2319-2336.
doi: 10.1007/s00477-021-02035-8 |
[52] |
Tang X Z, Hong H Y, Shu Y Q, et al. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples[J]. Journal of Hydrology, 2019, 576: 583-595.
doi: 10.1016/j.jhydrol.2019.06.058 |
[1] | WANG Yu, MAN Caixia, XU Ailin, SHI Qiujie. Spatial transformation and Chinese environmental governance innovation from an urban political ecology perspective: An analysis of Shenzhen’s evolving waterscape [J]. PROGRESS IN GEOGRAPHY, 2022, 41(9): 1755-1769. |
[2] | JIAO Qingyu, CHEN Xinfeng, ZHENG Zhigang, BAI Yiqin, LIU Yansi, ZHANG Zhengjuan, SUN Longni. Dynamic path planning of unmanned aerial vehicle based on crowd density prediction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1516-1527. |
[3] | JIANG Li, YU Jia, WEN Jiahong, TANG Jin, QI Manfei, WANG Luyang, ZHANG Min. Risk assessment of extreme flood in the north bank of the Hangzhou Bay under land use change scenarios [J]. PROGRESS IN GEOGRAPHY, 2021, 40(8): 1355-1370. |
[4] | TONG De, SUN Yiyu, XIE Miaomiao. Evaluation of green space accessibility based on improved Gaussian two-step floating catchment area method: A case study of Shenzhen City, China [J]. PROGRESS IN GEOGRAPHY, 2021, 40(7): 1113-1126. |
[5] | LI Bowen, HUANG Zhengdong, KUAI Xi, YU Xi. Evaluation of public transport services based on the spatial equality theory: A case study of Shenzhen City [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 958-966. |
[6] | ZHANG Lin, ZHOU Suhong, KWAN Mei-Po, CHEN Fei. Nonlinear effects of bus micro-environments on passengers’ comfort [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 967-979. |
[7] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[8] | GONG Yongxi, DUAN Jinghe, WANG Jiaqi, XIAO Zuopeng. Danwei-based life circle practice in the emerging city of Shenzhen: Construction and characteristics [J]. PROGRESS IN GEOGRAPHY, 2021, 40(4): 554-564. |
[9] | ZHANG Li, LI Bin, YANG Wenjing, LI Qiong. Forest vegetation classification and its variation in Lushan Nature Reserve using Proba-V vegetation products [J]. PROGRESS IN GEOGRAPHY, 2021, 40(4): 703-712. |
[10] | MA Heng, ZHANG Gangfeng, SHI Peijun. Advances and prospects of livestock snow disaster mechanism research and risk assessment [J]. PROGRESS IN GEOGRAPHY, 2021, 40(12): 2116-2129. |
[11] | Hui WANG, Changchun SONG. Regional ecological risk assessment of wetlands in the Sanjiang Plain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 872-882. |
[12] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[13] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[14] | Ning ZHANG, Dawei WANG. Drug-related crime risk assessment and predictive policing based on risk terrain modeling [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1131-1139. |
[15] | Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932. |
|