PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (8): 1467-1477.doi: 10.18306/dlkxjz.2022.08.010
• Articles • Previous Articles Next Articles
WANG Xin1,2,3(), RAN Min1,2,3,*(
), YANG Yunpeng1,2,3, JU Li1,2,3
Received:
2022-04-13
Revised:
2022-06-23
Online:
2022-08-28
Published:
2022-10-25
Contact:
RAN Min
E-mail:GEOWangX@henu.edu.cn;ranm@vip.henu.edu.cn
Supported by:
WANG Xin, RAN Min, YANG Yunpeng, JU Li. Peat δ13Cα-cellulose-based late Holocene temperature reconstruction in Pamir, China[J].PROGRESS IN GEOGRAPHY, 2022, 41(8): 1467-1477.
[1] |
Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11300 years[J]. Science, 2013, 339: 1198-1201.
doi: 10.1126/science.1228026 pmid: 23471405 |
[2] |
Bova S, Rosenthal Y, Liu Z Y, et al. Seasonal origin of the thermal maxima at the Holocene and the last interglacial[J]. Nature, 2021, 589: 548-553.
doi: 10.1038/s41586-020-03155-x |
[3] | Liu Z Y, Zhu J, Rosenthal Y, et al. The Holocene temperature conundrum[J]. PNAS, 2014, 111(34): 3501-3505. |
[4] | Zhang X, Chen F H. Non-trivial role of internal climate feedback on interglacial temperature evolution[J]. Nature, 2021, 600: E1-E3. |
[5] |
Wanner H. Late-Holocene: Cooler or warmer?[J]. The Holocene, 2021, 31(9): 1501-1506.
doi: 10.1177/09596836211019106 |
[6] |
Rao Z G, Shi F X, Li Y X, et al. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia[J]. Quaternary Science Reviews, 2020, 232: 106217. doi: 10.1016/j.quascirev.2020.106217.
doi: 10.1016/j.quascirev.2020.106217 |
[7] |
Wu D D, Cao J T, Jia G D, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464. doi: 10.1016/j.palaeo.2019.109464.
doi: 10.1016/j.palaeo.2019.109464 |
[8] |
Rao Z G, Huang C, Xie L H, et al. Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
doi: 10.1016/j.quascirev.2018.11.010 |
[9] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[10] |
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10: 297-317.
doi: 10.1016/0277-3791(91)90033-Q |
[11] |
Jiang Q F, Meng B W, Wang Z, et al. Exceptional terrestrial warmth around 4200-2800 years ago in Northwest China[J]. Science Bulletin, 2022, 67(4): 427-436.
doi: 10.1016/j.scib.2021.11.001 |
[12] | 冉敏, 杨奇丽, 张晓森. 中亚哈萨克斯坦西部过去-30000年以来有机碳同位素变化及其意义[J]. 干旱区资源与环境, 2013, 27(9): 60-65. |
[ Ran Min, Yang Qili, Zhang Xiaosen. The organic carbon isotope variation and its paleoclimate indicator in western Kazakhstan during past 30000 years. Journal of Arid Land Resources and Environment, 2013, 27(9): 60-65. ] | |
[13] |
Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276: 1821-1825.
doi: 10.1126/science.276.5320.1821 |
[14] |
Wang J K, Johnson K R, Borsato A, et al. Hydroclimatic variability in Southeast Asia over the past two millennia[J]. Earth and Planetary Science Letters, 2019, 525: 115737. doi: 10.1016/j.epsl.2019.115737.
doi: 10.1016/j.epsl.2019.115737 |
[15] |
张芳芳, 郑永宏, 潘国艳, 等. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953.
doi: 10.18306/dlkxjz.2018.07.008 |
[ Zhang Fangfang, Zheng Yonghong, Pan Guoyan, et al. Climatic significance of tree-ring δ18O in Shennongjia Mountain. Progress in Geography, 2018, 37(7): 946-953. ]
doi: 10.18306/dlkxjz.2018.07.008 |
|
[16] |
Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy[J]. Geochimica et Cosmochimica Acta, 2013, 112(3): 52-65.
doi: 10.1016/j.gca.2013.03.007 |
[17] | 马剑英, 陈发虎, 夏敦胜, 等. 荒漠植物红砂稳定碳同位素组成的空间分布特征[J]. 第四纪研究, 2006, 26(6): 947-954. |
[ Ma Jianying, Chen Fahu, Xia Dunsheng, et al. Spatial distribution characteristics of stable carbon isotope compositions in desert plant Reaumuria soongorica. Quaternary Sciences, 2006, 26(6): 947-954. ] | |
[18] | 赵兴云, 王建, 钱君龙. 用树轮δ13C重建1685年以来的大气CO2浓度变化趋势[J]. 第四纪研究, 2005, 25(5): 545-551. |
[ Zhao Xingyun, Wang Jian, Qian Junlong. Reconstruction of atmospheric CO2 concentration changes since 1685 by tree ring δ13C annual series. Quaternary Sciences, 2005, 25(5): 545-551. ] | |
[19] | 努尔帕提曼·买买提热依木, 帕尔哈提·阿不都拉. 帕米尔高原塔什库尔干县1960-2014年气温及降水变化[J]. 沙漠与绿洲气象, 2015(S1): 54-58. |
[ Nuerpatima Maimaitireyim, Paerhati Abudula. Changes of temperature and precipitation in tashkurgan County, Pamirs Plateau from 1960 to 2014. Desert and Oasis Meteorology, 2015(S1): 54-58. ] | |
[20] | 王国安. 稳定碳同位素在第四纪古环境研究中的应用[J]. 第四纪研究, 2003, 23(5): 471-484. |
[ Wang Guo'an. Application of stable carbon isotope for paleoenvironmental research. Quaternary Sciences, 2003, 23(5): 471-484. ] | |
[21] |
李小苗, 吴泽坤, 彭廷江, 等. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785.
doi: 10.7522/j.issn.1000-0240.2021.0019 |
[ Li Xiaomiao, Wu Zekun, Peng Tingjiang, et al. Late Miocene-Pliocene ecological evolution on the northeastern Tibetan Plateau and its possible mechanism. Journal of Glaciology and Geocryology, 2021, 43(3): 776-785. ]
doi: 10.7522/j.issn.1000-0240.2021.0019 |
|
[22] |
Edwards T W D, Graf W, Trimborn P, et al. δ13C response surface resolves humidity and temperature signals in trees[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 161-167.
doi: 10.1016/S0016-7037(99)00289-6 |
[23] |
Wang G A, Feng X, Han J M, et al. Paleovegetation reconstruction using δ13C of soil organic matter[J]. Biogeosciences, 2008, 5(5): 1325-1337.
doi: 10.5194/bg-5-1325-2008 |
[24] |
Zhao Y, Wu F L, Fang X M, et al. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance[J]. Quaternary International, 2017, 454: 45-55.
doi: 10.1016/j.quaint.2017.08.045 |
[25] |
Rao Z G, Guo W K, Cao J T, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 2017, 165: 110-119.
doi: 10.1016/j.earscirev.2016.12.007 |
[26] | 吴绍洪, 潘韬, 戴尔阜. 植物稳定同位素研究进展与展望[J]. 地理科学进展, 2006, 25(3): 1-11. |
[ Wu Shaohong, Pan Tao, Dai Erfu. The progress and prospect of stable isotopes in plants. Progress in Geography, 2006, 25(3): 1-11. ] | |
[27] |
Zhang D L, Yang Y P, Ran M. Variations of surface soil δ13Corg in the different climatic regions of China and paleoclimatic implication[J]. Quaternary International, 2020, 536: 92-102.
doi: 10.1016/j.quaint.2019.12.015 |
[28] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[29] |
Mischke S, Rajabov I, Mustaeva N, et al. Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): A reconnaissance study[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289: 10-24.
doi: 10.1016/j.palaeo.2010.02.004 |
[30] |
Schroeter N, Toney J L, Lauterbach S, et al. How to deal with multi-proxy data for paleoenvironmental reconstructions: Applications to a Holocene lake sediment record from the Tian Shan, Central Asia[J]. Frontiers in Earth Science, 2020, 8: 353. doi: 10.3389/feart.2020.00353.
doi: 10.3389/feart.2020.00353 |
[31] |
Thompson L G, Davis M E, Mosley-Thompson E, et al. Tropical ice core records: Evidence for asynchronous glaciation on Milankovitch timescales[J]. Journal of Quaternary Science, 2005, 20(7/8): 723-733.
doi: 10.1002/jqs.972 |
[32] |
Huang X Z, Chen C Z, Jia W N, et al. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48.
doi: 10.1016/j.palaeo.2015.04.027 |
[33] |
Huang X Z, Xiang L X, Lei G L, et al. Sedimentary Pediastrum record of middle-late Holocene temperature change and its impacts on early human culture in the desert-oasis area of northwestern China[J]. Quaternary Science Reviews, 2021, 265: 107054. doi: 10.1016/j.quascirev.2021.107054.
doi: 10.1016/j.quascirev.2021.107054 |
[34] |
Xie H C, Liang J, Vachula R S, et al. Changes in the hydrodynamic intensity of Bosten Lake and its impact on early human settlement in the northeastern Tarim Basin, Arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576: 110499. doi: 10.1016/j.palaeo.2021.110499.
doi: 10.1016/j.palaeo.2021.110499 |
[35] |
Rudaya N, Nazarova L, Novenko E, et al. Quantitative reconstructions of mid to late Holocene climate and vegetation in the north-eastern Altai Mountains recorded in Lake Teletskoye[J]. Global and Planetary Change, 2016, 141: 12-24.
doi: 10.1016/j.gloplacha.2016.04.002 |
[36] |
Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330.
doi: 10.1002/2015GL067317 |
[37] |
Hedrick K A, Seong Y B, Owen L A, et al. Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India[J]. Quaternary International, 2011, 236: 21-33.
doi: 10.1016/j.quaint.2010.07.023 |
[38] |
Seong Y B, Owen L A, Yi C L, et al. Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet[J]. Geological Society of America Bulletin, 2009, 121(3/4): 348-365.
doi: 10.1130/B26339.1 |
[39] |
Tian F, Herzschuh U, Telford R J, et al. A modern pollen-climate calibration set from central-western Mongolia and its application to a late glacial-Holocene record[J]. Journal of Biogeography, 2014, 41(10): 1909-1922.
doi: 10.1111/jbi.12338 |
[40] |
Indermühle A, Stocker T F, Joos F, et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica[J]. Nature, 1999, 398: 121-126.
doi: 10.1038/18158 |
[41] |
Zhang C, Zhao C, Yu S Y, et al. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau[J]. Earth-Science Reviews, 2022, 226: 103927. doi: 10.1016/j.earscirev.2022.103927.
doi: 10.1016/j.earscirev.2022.103927 |
[42] | Ramaswamy V, Boucher O, Haigh J, et al. Radiative forcing of climate change[M]. Cambridge, UK: Cambridge University Press, 2001: 349-416. |
[43] |
Kajita H, Kawahata H, Wang K, et al. Extraordinary cold episodes during the mid-Holocene in the Yangtze delta: Interruption of the earliest rice cultivating civilization[J]. Quaternary Science Reviews, 2018, 201: 418-428.
doi: 10.1016/j.quascirev.2018.10.035 |
[44] | 赵炳炎, 胡建芳, 刘丰豪, 等. 长江下游南漪湖沉积记录的全新世以来温度变化[J]. 第四纪研究, 2021, 41(4): 1044-1055. |
[ Zhao Bingyan, Hu Jianfang, Liu Fenghao, et al. Variation of temperature in Lake Nanyi sediments from the lower Yangtze River region since the last 12.0 ka B. P. Quaternary Sciences, 2021, 41(4): 1044-1055. ] | |
[45] |
Griffiths M L, Johnson K R, Pausata F S R, et al. End of Green Sahara amplified mid-to late Holocene megadroughts in mainland Southeast Asia[J]. Nature Communications, 2020, 11(1): 4204. doi: 10.1038/s41467-020-17927-6.
doi: 10.1038/s41467-020-17927-6 pmid: 32826905 |
[46] |
Pennington B T, Hamdan M A, Pears B R, et al. Aridification of the Egyptian Sahara 5000-4000 cal BP revealed from X-ray fluorescence analysis of Nile Delta sediments at Kom al-Ahmer/Kom Wasit[J]. Quaternary International, 2019, 514: 108-118.
doi: 10.1016/j.quaint.2019.01.015 |
[47] |
Nagashima K, Tada R, Toyoda S. Westerly jet-East Asian summer monsoon connection during the Holocene[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5041-5053.
doi: 10.1002/2013GC004931 |
[48] |
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P.[J]. Science, 2015, 347: 248-250.
doi: 10.1126/science.1259172 pmid: 25593179 |
[49] |
陈发虎, 夏欢, 高玉, 等. 史前人类探索,适应和定居青藏高原的历程及其阶段性讨论[J]. 地理科学, 2022, 42(1): 1-14.
doi: 10.13249/j.cnki.sgs.2022.01.001 |
[ Chen Fahu, Xia Huan, Gao Yu, et al. The processes of prehistoric human activities in the Tibetan Plateau: Occupation, adaptation and permanent settlement. Scientia Geographica Sinica, 2022, 42(1): 1-14. ]
doi: 10.13249/j.cnki.sgs.2022.01.001 |
|
[50] |
Dong G H, Jia X, Elston R, et al. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China[J]. Journal of Archaeological Science, 2013, 40(5): 2538-2546.
doi: 10.1016/j.jas.2012.10.002 |
[51] |
Qi X B, Cui C Y, Peng Y, et al. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau[J]. Molecular Biology and Evolution, 2013, 30(8): 1761-1778.
doi: 10.1093/molbev/mst093 |
[52] |
Qiu J. Who are the Tibetans?[J]. Science, 2015, 347: 708-711.
doi: 10.1126/science.347.6223.708 |
[53] |
Matuzeviciute G M, Preece R C, Wang S, et al. Ecology and subsistence at the Mesolithic and Bronze Age site of Aigyrzhal-2, Naryn Valley, Kyrgyzstan[J]. Quaternary International, 2017, 437: 35-49.
doi: 10.1016/j.quaint.2015.06.065 |
[1] | GUO Yaqi, CHEN Peng. Formation and feature analyses of crime hotspots using near repeat principle: A case study of robbery in Beijing [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 804-814. |
[2] | Zhixin HAO, Yani LIANG, Yang LIU, Xiu GENG, Jingyun ZHENG. Characteristics of temperature changes during the past millennium along the Ancient Silk Road [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 485-494. |
[3] | Zhen ZHANG, Shiyin LIU, Junfeng WEI, Zongli JIANG. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing [J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1545-1554. |
[4] | Dongping LONG, Lin LIU, Suhong ZHOU, Fangye DU, Guangwen SONG, Luzi XIAO. Research progress of criminal behavior from the perspective of geography [J]. PROGRESS IN GEOGRAPHY, 2017, 36(7): 886-902. |
[5] | Zhixin HAO, Di SUN, Xuezhen ZHANG, Jingyun ZHENG. Regional differences in temperature response in China to the large volcanic eruptions since the 20th century [J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 331-338. |
[6] | HAN Cuihua, HAO Zhixin, ZHENG Jingyun. Regionalization of temperature changes in China and characteristics of temperature in different regions during 1951-2010 [J]. PROGRESS IN GEOGRAPHY, 2013, 32(6): 887-896. |
[7] | GE Quan sheng, FANG Xiu qi, ZHENG Jing yun . New Understandings on the Historical Temperature Changes in China [J]. PROGRESS IN GEOGRAPHY, 2002, 21(4): 311-317. |
|