PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (7): 1239-1250.doi: 10.18306/dlkxjz.2022.07.008
• Articles • Previous Articles Next Articles
ZHANG Fan1(), ZHANG Yongyong2,*(
), CHEN Junxu1, ZHAI Xiaoyan3, HU Qingfang4
Received:
2021-12-06
Revised:
2022-03-14
Online:
2022-07-28
Published:
2022-09-28
Contact:
ZHANG Yongyong
E-mail:ZhangF_YN@163.com;zhangyy003@igsnrr.ac.cn
Supported by:
ZHANG Fan, ZHANG Yongyong, CHEN Junxu, ZHAI Xiaoyan, HU Qingfang. Performance of multiple machine learning model simulation of process characteristic indicators of different flood types[J].PROGRESS IN GEOGRAPHY, 2022, 41(7): 1239-1250.
Tab.1
Flood process characteristic indicators
类别 | 指标 | 简写 | 单位 | 计算公式 | 备注 |
---|---|---|---|---|---|
量级 | 洪水总量 | Flow | mm | | 反映洪水总量级。 |
洪峰流量 | Qpk | | 反映洪峰量级。除以总流量以消除量纲的影响 | ||
时间 | 洪水历时 | Dur | d | | 反映总时间特征。指标含义同上 |
洪峰时间偏度 | FT | | 反映洪峰出现时间。 | ||
形态 | 高流量历时占比 | HT | | 反映洪峰形态。 | |
动力学 | 涨洪速率 | Inr | m3∙s-1∙h-1 | | 反映洪水过程的变化率。 |
落洪速率 | Der | m3∙s-1∙h-1 | | 反映洪水过程的变化率。 |
Tab.2
Key precipitation indicators affecting flood process
类别 | 指标 | 计算方式 | 说明 |
---|---|---|---|
量级 | 平均雨量 | | 反映流域降雨强度。T为降水总历时, |
最大雨强 | | 反映流域降雨强度。 | |
面降雨量 | | 反映流域降雨量级情况。指标含义同上 | |
峰前雨量 | | 反映降水中前期状况。 | |
时间 | 雨峰系数 | | 反映流域降水峰值出现时间。T为降水总历时 |
时间变差系数 | | 反映流域降水在时间上的均匀度。 | |
降水集中度 | | 反映流域降水在时间上的集中度。 | |
空间 | 雨量极大值比 | | 反映流域降雨空间均匀度。 |
暴雨相对中心 | | 反映流域降雨中心到流域出口的距离。 | |
起始流量 | 反映流域降雨前期含水情况 |
Tab.3
Comprehensive simulation performance of all the flood process characteristic indicators using the four machine learning models
模型 | 相对误差/% | 相关系数 | 均方根对数误差 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
率定集 | 验证集 | 综合 | 率定集 | 验证集 | 综合 | 率定集 | 验证集 | 综合 | |||
多元线性回归 | 41 | 102 | 60 | 0.90 | 0.68 | 0.82 | 0.14 | 0.18 | 0.16 | ||
多层感知器 | 37 | 75 | 49 | 0.91 | 0.77 | 0.88 | 0.11 | 0.14 | 0.12 | ||
随机森林 | 21 | 109 | 48 | 0.98 | 0.75 | 0.93 | 0.06 | 0.17 | 0.11 | ||
支持向量机 | 23 | 98 | 45 | 0.92 | 0.67 | 0.87 | 0.04 | 0.16 | 0.10 |
Tab.4
Simulation performance of different flood types using the four models
评价指标 | 模型 | 洪水类型 | ||
---|---|---|---|---|
1类 | 2类 | 3类 | ||
相对误差/% | 多元线性回归 | 37 | 81 | 24 |
多层感知器 | 30 | 64 | 24 | |
随机森林 | 23 | 69 | 12 | |
支持向量机 | 33 | 57 | 18 | |
相关系数 | 多元线性回归 | 0.80 | 0.60 | 0.87 |
多层感知器 | 0.83 | 0.74 | 0.84 | |
随机森林 | 0.90 | 0.74 | 0.97 | |
支持向量机 | 0.76 | 0.77 | 0.92 | |
均方根对数误差 | 多元线性回归 | 0.10 | 0.18 | 0.07 |
多层感知器 | 0.11 | 0.13 | 0.10 | |
随机森林 | 0.07 | 0.14 | 0.03 | |
支持向量机 | 0.07 | 0.12 | 0.04 |
[1] | Jia S F, Li Y Y, Lü A F, et al. City storm-flood events in China, 1984-2015 [J]. International Journal of Water Resources Development, 2019, 35(4): 605-618. |
[2] |
Li Y, Gong S Y, Zhang Z R, et al. Vulnerability evaluation of rainstorm disaster based on ESA conceptual framework: A case study of Liaoning Province, China[J]. Sustainable Cities and Society, 2021, 64: 102540. doi: 10.1016/j.scs.2020.102540
doi: 10.1016/j.scs.2020.102540 |
[3] |
Shi J, Cui L L, Tian Z. Spatial and temporal distribution and trend in flood and drought disasters in East China[J]. Environmental Research, 2020, 185: 109406. doi: 10.1016/j.envres.2020.109406.
doi: 10.1016/j.envres.2020.109406 |
[4] | Li L P, Zhang K M, Luo T, et al. An analysis of the drought and flood hazard characteristics and risks during the pre-rainy season in South China[J]. Natural Hazards, 2014, 71(2): 1195-1213. |
[5] | Bhaskar N R, French M N, Kyiamah G K. Characterization of flash floods in eastern Kentucky[J]. Journal of Hydrologic Engineering, 2000, 5(3): 327-331. |
[6] | Saharia M, Kirstetter P E, Vergara H, et al. Characterization of floods in the United States[J]. Journal of Hydrology, 2017, 548: 524-535. |
[7] |
张永勇, 陈秋潭. 淮河中上游流域洪水主要类型及其时空分布特征[J]. 地理科学进展, 2020, 39(4): 627-635.
doi: 10.18306/dlkxjz.2020.04.009 |
[ Zhang Yongyong, Chen Qiutan. Characteristics of main flood event types and their temporal-spatial variations in the upper and middle reaches of the Huai River Basin. Progress in Geography, 2020, 39(4): 627-635. ]
doi: 10.18306/dlkxjz.2020.04.009 |
|
[8] | Ma H, Yang D W. Hydrological model comparison and combination for flood forecast in the Three Gorges Region, China[J]. Advances in Geosciences, 2010, 17: 203-216. |
[9] | Petheram C, Rustomji P, Chiew F, et al. Rainfall-runoff modelling in northern Australia: A guide to modelling strategies in the tropics[J]. Journal of Hydrology, 2012, 462/463: 28-41. |
[10] | Zhang Y Q, Chiew F H S, Li M, et al. Predicting runoff signatures using regression and hydrological modeling approaches[J]. Water Resources Research, 2018, 54(10): 7859-7878. |
[11] | 孙娜. 机器学习理论在径流智能预报中的应用研究[D]. 武汉: 华中科技大学, 2019. |
[ Sun Na. The theory of machine learning and its applications in the hydrological forecasting. Wuhan, China: Huazhong University of Science and Technology, 2019. ] | |
[12] |
李伶杰, 王银堂, 胡庆芳, 等. 基于时变权重组合与贝叶斯修正的中长期径流预报[J]. 地理科学进展, 2020, 39(4): 643-650.
doi: 10.18306/dlkxjz.2020.04.011 |
[ Li Lingjie, Wang Yintang, Hu Qingfang, et al. Mid-and long-term runoff prediction based on time-varying weight combination and Bayesian correction. Progress in Geography, 2020, 39(4): 643-650. ]
doi: 10.18306/dlkxjz.2020.04.011 |
|
[13] | Adnan R M, Petroselli A, Heddam S, et al. Comparison of different methodologies for rainfall-runoff modeling: Machine learning vs conceptual approach[J]. Natural Hazards, 2021, 105(3): 2987-3011. |
[14] |
Deng T A, Chau K W, Duan H F. Machine learning based marine water quality prediction for coastal hydro-environment management[J]. Journal of Environmental Management, 2021, 284: 112051. doi: 10.1016/j.jenvman.2021112051.
doi: 10.1016/j.jenvman.2021112051 |
[15] |
Chen J L, Huang G R, Chen W J. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models[J]. Journal of Environmental Management, 2021, 293: 112810. doi: 10.1016/j.jenvman.2021.112810.
doi: 10.1016/j.jenvman.2021.112810 |
[16] | McIntyre N, Al-Qurashi A, Wheater H. Regression analysis of rainfall-runoff data from an arid catchment in Oman[J]. Hydrological Sciences Journal, 2007, 52(6): 1103-1118. |
[17] | Al-Rawas G A, Valeo C. Relationship between wadi drainage characteristics and peak-flood flows in arid northern Oman[J]. Hydrological Sciences Journal, 2010, 55(3): 377-393. |
[18] | 林木生, 陈兴伟, 陈莹. 晋江西溪流域洪水与暴雨时空分布特征的相关分析[J]. 资源科学, 2011, 33(12): 2226-2231. |
[ Lin Musheng, Chen Xingwei, Chen Ying. Regression analysis of flood response to the spatial and temporal variability of storm in the Jinjiangxixi Watershed. Resources Science, 2011, 33(12): 2226-2231. ] | |
[19] | Boukharouba K, Roussel P, Dreyfus G, et al. Flash flood forecasting using support vector regression: An event clustering based approach[C]// 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Southampton, UK: IEEE, 2013: 1-6. |
[20] | Li X, Sha J, Wang Z L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method[J]. Hydrological Sciences Journal, 2019, 64(15): 1857-1866. |
[21] | 牟凤云, 杨猛, 林孝松, 等. 基于机器学习算法模型的巫山县洪水灾害研究[J]. 中山大学学报(自然科学版), 2020, 59(1): 105-113. |
[ Mu Fengyun, Yang Meng, Lin Xiaosong, et al. The flood disasters in Wushan County based on machine learning algorithm model. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(1): 105-113. ] | |
[22] | Tayebiyan A, Mohammad T A, Ghazali A H. Artificial neural network for modelling rainfall-runoff[J]. Pertanika Journal of Science & Technology, 2016, 24(2): 319-330. |
[23] | Shortridge J E, Guikema S D, Zaitchik B F. Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds[J]. Hydrology and Earth System Sciences, 2016, 20(7): 2611-2628. |
[24] | 左岗岗. 基于机器学习的渭河流域径流预测系统研究[D]. 西安: 西安理工大学, 2017. |
[ Zuo Ganggang. The research of Wei River runoff prediction system based on machine learning. Xi'an, China: Xi'an University of Technology, 2017. ] | |
[25] | 冯志刚, 梁树献, 徐胜, 等. 近60年淮河流域夏季降水的变化特征[J]. 水文, 2019, 39(6): 85-89. |
[ Feng Zhigang, Liang Shuxian, Xu Sheng, et al. Variation characteristics of summer precipitation in Huaihe River Basin in recent 60years. Journal of China Hydrology, 2019, 39(6): 85-89. ] | |
[26] | Akaike H. A Bayesian analysis of the minimum AIC procedure[J]. Annals of the Institute of Statistical Mathematics, 1978, 30(1): 9-14. |
[27] | 杨柳, 王钰. 泛化误差的各种交叉验证估计方法综述[J]. 计算机应用研究, 2015, 32(5): 1287-1290, 1297. |
[ Yang Liu, Wang Yu. Survey for various cross-validation estimators of generalization error. Application Research of Computers, 2015, 32(5): 1287-1290, 1297. ] |
|