PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (2): 304-315.doi: 10.18306/dlkxjz.2022.02.010
• Articles • Previous Articles Next Articles
LIU Zhe1,2,4(), CUO Lan1,2,3,4,*(
)
Received:
2021-05-01
Revised:
2021-09-20
Online:
2022-02-28
Published:
2022-04-28
Contact:
CUO Lan
E-mail:liuzhe@itpcas.ac.cn;lancuo@itpcas.ac.cn
Supported by:
LIU Zhe, CUO Lan. Investigating the mechanisms of streamflow change in the Beichuan River Basin, Qinghai Province: Based on modeling and statistic analyses[J].PROGRESS IN GEOGRAPHY, 2022, 41(2): 304-315.
Tab.1
Detailed information of observed hydrometeorological data used in the study
类型 | 站点 | 纬度/(°) | 经度/(°) | 海拔/m | 数据类型 | 时段 | 数据来源 | 备注 |
---|---|---|---|---|---|---|---|---|
气象站 | 门源(MY) | 37.38 | 101.62 | 2938 | 最高气温、最低气温、降水、风速、相对湿度 | 1960—2019年 | 青海省气象局 | 相对湿度(2000—2019年) |
大通(DT) | 36.95 | 101.68 | 2459 | 最高气温、最低气温、降水、风速、相对湿度 | 1960—2019年 | 青海省气象局 | ||
水文站 | 牛场(NC) | 37.25 | 101.36 | 3004 | 降水、流量 | 2002—2019年 | 青海省水文水资源勘测局 | 降水(1976—2019年) |
黑林(HL) | 37.08 | 101.4 | 2756 | 降水、流量 | 1981—2019年 | 青海省水文水资源勘测局 | ||
峡门(XM) | 37.08 | 101.57 | 2618 | 降水、流量 | 1966—2000年 | 青海省水文水资源勘测局 | ||
桥头(QT) | 36.93 | 101.69 | 2442 | 降水、流量 | 1960—2019年 | 青海省水文水资源勘测局 |
Tab.3
Monthly streamflow change and contribution from different impact factors at the Qiaotou Station based on the DHSVM simulation during 1970-2019
月份 | 总径流量变化/mm | 气候变化影响/% | 下垫面变化影响 | ||
---|---|---|---|---|---|
土地覆盖变化影响/% | 水库调节影响/% | 两者影响之和/% | |||
1 | 3.39 | 2.29 | -10.71 | 108.42 | 97.71 |
2 | 3.19 | 2.60 | -9.38 | 106.79 | 97.40 |
3 | 2.91 | 15.00 | -14.04 | 99.04 | 85.00 |
4 | 1.94 | 54.67 | -43.18 | 88.51 | 45.33 |
5 | -7.78 | 66.33 | 27.53 | 6.14 | 33.67 |
6 | -5.40 | -15.03 | 58.04 | 56.99 | 115.03 |
7 | -7.80 | -3.32 | 39.06 | 64.25 | 103.32 |
8 | -16.08 | 50.90 | 18.25 | 30.85 | 49.10 |
9 | -5.28 | -64.24 | 65.29 | 98.96 | 164.24 |
10 | -4.96 | 49.20 | 41.30 | 9.50 | 50.80 |
11 | 1.25 | -56.56 | -68.24 | 224.80 | 156.56 |
12 | 3.07 | -3.76 | -16.46 | 120.22 | 103.76 |
[1] |
Teuling A J, de Badts E A G, Jansen F A, et al. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe[J]. Hydrology and Earth System Sciences, 2019, 23(9):3631-3652.
doi: 10.5194/hess-23-3631-2019 |
[2] |
Henriques C, Garnett K, Weatherhead E K, et al. The future water environment: Using scenarios to explore the significant water management challenges in England and Wales to 2050[J]. Science of the Total Environment, 2015, 512/513:381-396.
doi: 10.1016/j.scitotenv.2014.12.047 |
[3] |
Milly P C D, Betancourt J, Falkenmark M, et al. Stationarity is dead: Whither water management?[J]. Science, 2008, 319:573-574.
doi: 10.1126/science.1151915 pmid: 18239110 |
[4] |
Wang D B, Hejazi M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States[J]. Water Resources Research, 2011, 47(10): W00J12. doi: 10.1029/2010WR010283.
doi: 10.1029/2010WR010283 |
[5] |
Milly P C D, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005, 438:347-350.
doi: 10.1038/nature04312 |
[6] |
Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology, 1982, 55:3-23.
doi: 10.1016/0022-1694(82)90117-2 |
[7] |
Brown A E, Zhang L, McMahon T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of Hydrology, 2005, 310(1-4):28-61.
doi: 10.1016/j.jhydrol.2004.12.010 |
[8] | 李丽娟, 姜德娟, 李九一, 等. 土地利用/覆被变化的水文效应研究进展[J]. 自然资源学报, 2007, 22(2):211-224. |
[ Li Lijuan, Jiang Dejuan, Li Jiuyi, et al. Advances in hydrological response to land use /land cover change. Journal of Natural Resources, 2007, 22(2):211-224. ] | |
[9] | Tang Q H, Oki T. Terrestrial water cycle and climate change: Natural and human-induced impacts[M]. New Jersey, USA: John Wiley & Sons, Inc., 2016: 103-134. |
[10] | 黄艳艳, 赵红莉, 蒋云钟, 等. 雅砻江上游径流及影响因素关系研究[J]. 干旱区地理, 2018, 41(1):127-133. |
[ Huang Yanyan, Zhao Hongli, Jiang Yunzhong, et al. Runoff and its influencing factors in the upper reaches of the Yalong River. Arid Land Geography, 2018, 41(1):127-133. ] | |
[11] |
Gao P, Li P F, Zhao B L, et al. Use of double mass curves in hydrologic benefit evaluations[J]. Hydrological Processes, 2017, 31(26):4639-4646.
doi: 10.1002/hyp.v31.26 |
[12] |
Wang F Y, Duan K Q, Fu S Y, et al. Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China[J]. Science of the Total Environment, 2019, 665:579-590.
doi: 10.1016/j.scitotenv.2019.01.386 |
[13] |
Dey P, Mishra A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions[J]. Journal of Hydrology, 2017, 548:278-290.
doi: 10.1016/j.jhydrol.2017.03.014 |
[14] |
Wang H N, Chen L H, Yu X X. Distinguishing human and climate influences on streamflow changes in Luan River Basin in China[J]. Catena, 2016, 136:182-188.
doi: 10.1016/j.catena.2015.02.013 |
[15] |
Cuo L, Zhang Y X, Gao Y H, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J]. Journal of Hydrology, 2013, 502:37-52.
doi: 10.1016/j.jhydrol.2013.08.003 |
[16] |
孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7):1126-1139.
doi: 10.18306/dlkxjz.2020.07.006 |
[ Sun He, Su Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin. Progress in Geography, 2020, 39(7):1126-1139. ] | |
[17] | 冯夏清, 章光新, 尹雄锐. 基于SWAT模型的乌裕尔河流域气候变化的水文响应[J]. 地理科学进展, 2010, 29(7):827-832. |
[ Feng Xiaqing, Zhang Guangxin, Yin Xiongrui. Study on the hydrological response to climate change in Wuyur River Basin based on the SWAT model. Progress in Geography, 2010, 29(7):827-832. ] | |
[18] |
Bhatta B, Shrestha S, Shrestha P K, et al. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin[J]. Catena, 2019, 181:104082. doi: 10.1016/j.catena.2019.104082.
doi: 10.1016/j.catena.2019.104082 |
[19] |
Chang J X, Zhang H X, Wang Y M, et al. Impact of climate change on runoff and uncertainty analysis[J]. Natural Hazards, 2017, 88(2):1113-1131.
doi: 10.1007/s11069-017-2909-0 |
[20] |
Liu Z, Cuo L, Li Q J, et al. Impacts of climate change and land use/cover change on streamflow in Beichuan River Basin in Qinghai Province, China[J]. Water, 2020, 12(4):1198. doi: 10.3390/w12041198.
doi: 10.3390/w12041198 |
[21] |
Wu J W, Miao C Y, Wang Y M, et al. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods[J]. Journal of Hydrology, 2017, 545:263-275.
doi: 10.1016/j.jhydrol.2016.12.050 |
[22] |
Ehsani N, Vörösmarty C J, Fekete B M, et al. Reservoir operations under climate change: Storage capacity options to mitigate risk[J]. Journal of Hydrology, 2017, 555:435-446.
doi: 10.1016/j.jhydrol.2017.09.008 |
[23] |
Gao B, Yang D W, Yang H B. Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River[J]. Quaternary International, 2013, 304:43-50.
doi: 10.1016/j.quaint.2012.11.023 |
[24] | Wurbs R. Water rights analysis package (WRAP) modeling system reference manual[M]. Texas, USA: Texas Water Resources Institute, 2012: 11-223. |
[25] |
Zhao G, Gao H L, Naz B S, et al. Integrating a reservoir regulation scheme into a spatially distributed hydrological model[J]. Advances in Water Resources, 2016, 98:16-31.
doi: 10.1016/j.advwatres.2016.10.014 |
[26] | 郭志云, 张宝元. 大通北川河源区自然保护区季节性冻土调查研究初探[J]. 青海农林科技, 2014(1):41-42. |
[ Guo Zhiyun, Zhang Baoyuan. Survey on seasonal frozen soil Heyuan District of Beichuan Nature Reserve. Science and Technology of Qinghai Agriculture and Forestry, 2014(1):41-42. ] | |
[27] | 张建国, 武玉峰. 黑泉水库汇流区的基本特征与生态保护对策[J]. 青海环境, 2002, 12(4):149-151. |
[ Zhang Jianguo, Wu Yufeng. Basic characteristics and ecological protection countermeasures of Heiquan reservoir drainage basin. Journal of Qinghai Environment, 2002, 12(4):149-151. ] | |
[28] |
Li L J, Zhang L, Wang H, et al. Assessing the impact of climate variability and human activities on streamflow from the Wuding River Basin in China[J]. Hydrological Processes, 2007, 21(25):3485-3491.
doi: 10.1002/(ISSN)1099-1085 |
[29] |
Liang L Q, Li L J, Liu Q. Temporal variation of reference evapotranspiration during 1961-2005 in the Taoer River Basin of Northeast China[J]. Agricultural and Forest Meteorology, 2010, 150(2):298-306.
doi: 10.1016/j.agrformet.2009.11.014 |
[30] |
Zhang X Z, Li P, Li D S. Spatiotemporal variations of precipitation in the southern part of the Heihe River Basin (China), 1984-2014[J]. Water, 2018, 10(4):410. doi: 10.3390/w10040410.
doi: 10.3390/w10040410 |
[31] |
Wang X B, He K N, Dong Z. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China[J]. Catena, 2019, 176:81-93.
doi: 10.1016/j.catena.2019.01.001 |
[32] |
Cuo L, Zhang Y X, Wu Y Q, et al. Desertification affecting the Tibetan Plateau between 1971-2015: Viewed from a climate perspective[J]. Land Degradation & Development, 2020, 31(15):1956-1968.
doi: 10.1002/ldr.v31.15 |
[33] |
Ding J, Cuo L, Zhang Y X, et al. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963-2015[J]. Scientific Reports, 2018, 8:11860. doi: 10.1038/s41598-018-30320-0.
doi: 10.1038/s41598-018-30320-0 pmid: 30089784 |
[34] | Budyko M I. Climate and life[M]. London, UK: Academic Press, 1974. |
[35] |
孟德娟, 莫兴国. 气候变化对不同气候区流域年径流影响的识别[J]. 地理科学进展, 2013, 32(4):587-594.
doi: 10.11820/dlkxjz.2013.04.011 |
[ Meng Dejuan, Mo Xingguo. Identification of impact of climate change on annual runoff in typical basins of different climate zones. Progress in Geography, 2013, 32(4):587-594. ] | |
[36] |
Milly P C D. Climate, soil water storage, and the average annual water balance[J]. Water Resources Research, 1994, 30(7):2143-2156.
doi: 10.1029/94WR00586 |
[37] |
Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3):701-708.
doi: 10.1029/2000WR900325 |
[38] |
Porporato A, Daly E, Rodriguez-Iturbe I. Soil water balance and ecosystem response to climate change[J]. The American Naturalist, 2004, 164(5):625-632.
pmid: 15540152 |
[39] |
Choudhury B J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model[J]. Journal of Hydrology, 1999, 216(1/2):99-110.
doi: 10.1016/S0022-1694(98)00293-5 |
[40] |
Yang H B, Yang D W, Lei Z D, et al. New analytical derivation of the mean annual water‐energy balance equation[J]. Water Resources Research, 2008, 44(3):W03410. doi: 10.1029/2007WR006135.
doi: 10.1029/2007WR006135 |
[41] |
Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology‐vegetation model for complex terrain[J]. Water resources research, 1994, 30(6):1665-1679.
doi: 10.1029/94WR00436 |
[42] |
Cuo L, Lettenmaier D P, Alberti M, et al. Effects of a century of land cover and climate change on the hydrology of the Puget Sound Basin[J]. Hydrological Processes, 2009, 23(6):907-933.
doi: 10.1002/hyp.v23:6 |
[43] |
Elsner M M, Cuo L, Voisin N, et al. Implications of 21st century climate change for the hydrology of Washington State[J]. Climatic Change, 2010, 102(1/2):225-260.
doi: 10.1007/s10584-010-9855-0 |
[44] |
Burges S J, Wigmosta M S, Meena J M. Hydrological effects of land-use change in a zero-order catchment[J]. Journal of Hydrologic Engineering, 1998, 3(2):86-97.
doi: 10.1061/(ASCE)1084-0699(1998)3:2(86) |
[45] |
Cuo L, Beyene T K, Voisin N, et al. Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound Basin, Washington[J]. Hydrological Processes, 2011, 25(11):1729-1753.
doi: 10.1002/hyp.v25.11 |
[46] |
Cuo L, Lettenmaier D P, Mattheussen B V, et al. Hydrologic prediction for urban watersheds with the Distributed Hydrology-Soil-Vegetation Model[J]. Hydrological Processes, 2008, 22(21):4205-4213.
doi: 10.1002/hyp.v22:21 |
[47] |
Zhao G, Gao H, Cuo L. Effects of urbanization and climate change on peak flows over the San Antonio River Basin, Texas[J]. Journal of Hydrometeorology, 2016, 17(9):2371-2389.
doi: 10.1175/JHM-D-15-0216.1 |
[48] |
Sun N, Yearsley J, Voisin N, et al. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds[J]. Hydrological Processes, 2015, 29(10):2331-2345.
doi: 10.1002/hyp.10363 |
[49] |
Sun N, Yearsley J, Baptiste M, et al. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality[J]. Hydrological Processes, 2016, 30(25):4779-4798.
doi: 10.1002/hyp.v30.25 |
[50] |
Doten C O, Bowling L C, Lanini J S, et al. A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds[J]. Water Resources Research, 2006, 42(4):W04417. doi: 10.1029/2004WR003829.
doi: 10.1029/2004WR003829 |
[51] |
Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3):885-900.
doi: 10.13031/2013.23153 |
[52] |
Beven K. A manifesto for the equifinality journal[J]. Journal of Hydrology, 2006, 320(1/2):18-36.
doi: 10.1016/j.jhydrol.2005.07.007 |
[53] | 徐宗学. 水文模型:回顾与展望[J]. 北京师范大学学报(自然科学版), 2010, 46(3):278-289. |
[ Xu Zongxue. Hydrological models: Past, present and future. Journal of Beijing Normal University (Natural Science), 2010, 46(3):278-289. ] |
[1] | LI Shuangshuang, ZHANG Yufeng, WANG Chengbo, WANG Ting, YAN Junping. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 1026-1036. |
[2] | WEN Zhihong, DENG Guorong, ZHAO Jianjun, ZHANG Hongyan, GUO Xiaoyi. Response of velocity of vegetation greenup to frost in the Greater Khingan Mountains [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 839-847. |
[3] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[4] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[5] | LI Shuangshuang, ZHANG Yufeng, ZHANG Liwei, WANG Ting, YAN Junping. Spatio-temporal variation of actual evapotranspiration in the south and north of the Qinling Mountains during 2000-2019 [J]. PROGRESS IN GEOGRAPHY, 2021, 40(11): 1900-1910. |
[6] | JIAN Yiwei, FU Jin, ZHOU Feng. A review of studies on the impacts of extreme precipitation on rice yields [J]. PROGRESS IN GEOGRAPHY, 2021, 40(10): 1746-1760. |
[7] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[8] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[9] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[10] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[11] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[12] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[13] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[14] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[15] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
|