PROGRESS IN GEOGRAPHY ›› 2022, Vol. 41 ›› Issue (2): 251-263.doi: 10.18306/dlkxjz.2022.02.006
• Articles • Previous Articles Next Articles
LIU Jixiang1(), XIAO Longzhu2,*(
), ZHOU Jiangping1, GUO Yuanyuan3, YANG Linchuan4
Received:
2021-02-07
Revised:
2021-05-25
Online:
2022-02-28
Published:
2022-04-28
Contact:
XIAO Longzhu
E-mail:u3004679@connect.hku.hk;xiaolongzhuu@163.com
Supported by:
LIU Jixiang, XIAO Longzhu, ZHOU Jiangping, GUO Yuanyuan, YANG Linchuan. Non-linear relationships between the built environment and walking to school: Applying extreme gradient boosting method[J].PROGRESS IN GEOGRAPHY, 2022, 41(2): 251-263.
Tab.1
Descriptive statistics of independent variables
变量 | 定义/描述 | 均值(标准差)或百分比 |
---|---|---|
社会经济属性 | ||
年龄 | 受访者年龄(岁) | 11.09 (8.32) |
性别 | 1=女,0=男 | 0=48.0%, 1=52.0% |
住房面积 | 家庭住房面积(m2) | 79.77 (46.37) |
住房性质 | 分类变量(1=自有, 2=单位住房, 3=租住) | 1=81.3%, 2=4.5%, 3=14.2% |
家庭规模 | 家庭成员数量(人) | 4.85 (3.22) |
户口 | 1=有厦门户口,2=无厦门户口 | 0=9.8%, 1=90.2% |
拥有小汽车 | 1=所在家庭拥有至少1辆小汽车,0=无 | 0=83.7%, 1=16.3% |
父/母以步行通勤 | 1=父母亲至少一人以步行为通勤方式,0=无 | 0=81.17%, 1=18.83% |
有人接送 | 1=有长辈接送,0=无 | 0=70.11%, 1=29.89% |
出行特征 | ||
通学距离 | 受访者通学实际距离(km) | 1.24 (1.68) |
建成环境 | ||
人口密度 | 人口数量/TAZ面积(人/km2) | 13194.87 (10325.10) |
容积率 | 总建筑面积/TAZ面积 | 0.88 (0.56) |
土地利用混合度 | 14种主要的土地利用类型(包括居住、工业、教育、行政办公、休闲娱乐、公共开放空间等)的数量及比例,采用改良版的熵值法计算 | 0.58 (0.16) |
交叉口密度 | 道路交叉口数量/ TAZ面积(个/km2) | 82.88 (64.35) |
公交密度 | 公交线路数量/ TAZ面积(条/km2) | 69.44 (62.78) |
离市中心距离 | 从TAZ中心到CBD(即中山路)的路网距离(km) | 8.78 (4.07) |
Tab.2
Model performance
模型 | 操作平台 | 最佳迭代数 | 训练误差 | 测试误差 | 预测准确率/% | AUC值 |
---|---|---|---|---|---|---|
XGBoost | R, “XGBoost” | 9931 | 0.1258 | 0.1713 | 82.88 | 0.892 |
GBDT | R, “caret” | 6554 | 0.2188 | 0.2149 | 78.51 | 0.816 |
RF | R, “randomForest” | 500 | 0.1561 | 0.1789 | 82.11 | 0.848 |
LightGBM | Python, “lightGBM” | 19821 | 0.1610 | 0.1937 | 80.63 | 0.803 |
Adaboost | R, “adabag” | 500 | 0.1686 | 0.1923 | 80.77 | 0.798 |
Logistic | R, “glm” | — | 0.2243 | 0.2396 | 76.04 | 0.743 |
Tab.3
Relative importance of independent variables
变量 | 相对重要性/% | 排名 |
---|---|---|
出行特征 | ||
通学距离 | 39.99 | 1 |
社会经济属性 | ||
住房面积 | 7.84 | 2 |
年龄 | 7.13 | 3 |
有人接送 | 2.52 | 15 |
家庭规模 | 1.42 | 17 |
性别 | 1.14 | 18 |
拥有小汽车 | 1.13 | 19 |
父/母以步行通勤 | 0.97 | 20 |
户口 | 0.81 | 21 |
住房性质 | 0.38 | 22 |
小计 | 23.73 | |
出发地(家)建成环境 | ||
土地利用混合度 | 3.67 | 4 |
离市中心距离 | 3.59 | 5 |
道路交叉口密度 | 3.50 | 6 |
容积率 | 3.28 | 8 |
公交站点密度 | 2.90 | 9 |
人口密度 | 2.88 | 10 |
小计 | 19.82 | |
目的地(校)建成环境 | ||
道路交叉口密度 | 3.45 | 7 |
离市中心距离 | 2.82 | 11 |
公交站点密度 | 2.70 | 12 |
容积率 | 2.69 | 13 |
土地利用混合度 | 2.56 | 14 |
人口密度 | 2.24 | 16 |
小计 | 16.46 |
[1] |
Zhu X M, Lee C. Correlates of walking to school and implications for public policies: Survey results from parents of elementary school children in Austin, Texas[J]. Journal of Public Health Policy, 2009, 30(S1):S177-S202.
doi: 10.1057/jphp.2008.51 |
[2] |
姜玉培, 甄峰, 王文文, 等. 城市建成环境对居民身体活动的影响研究进展与启示[J]. 地理科学进展, 2019, 38(3):357-369.
doi: 10.18306/dlkxjz.2019.03.006 |
[ Jiang Yupei, Zhen Feng, Wang Wenwen, et al. Influence of urban built environment on residents' physical activity: Review and implications. Progress in Geography, 2019, 38(3):357-369. ] | |
[3] |
Lee I-M, Buchner D M. The importance of walking to public health[J]. Medicine and Science in Sports and Exercise, 2008, 40(S7):S512-S518.
doi: 10.1249/MSS.0b013e31817c65d0 |
[4] |
王依茹, 王琛, 曾金迪. 个体与环境交互作用下中国成人超重肥胖情况变化趋势及影响因素研究[J]. 地理科学进展, 2020, 39(1):100-110.
doi: 10.18306/dlkxjz.2020.01.010 |
[ Wang Yiru, Wang Chen, Zeng Jindi. Study on the trend and influencing factors of overweight and obesity in Chinese adults under interactions of individual and environment. Progress in Geography, 2020, 39(1):100-110. ] | |
[5] | Guthold R, Stevens G A, Riley L M, et al. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants[J]. The Lancet Child & Adolescent Health, 2020, 4(1):23-35. |
[6] | Dong Y, Lau P W, Dong B, et al. Trends in physical fitness, growth, and nutritional status of Chinese children and adolescents: A retrospective analysis of 1.5 million students from six successive national surveys between 1985 and 2014[J]. The Lancet Child & Adolescent Health, 2019, 3(12):871-880. |
[7] | 梁璇. 中日青少年体质健康数字“差”的背后 [N/OL]. 中国青年报, 2017-06-26(8) [2021-01-01]. http://zqb.cyol.com/html/2017-06/26/nw.D110000zgqnb_20170626_1-08.htm. |
[ Liang Xuan. Behind the gap of physical fitness between Chinese and Japanese adolescents. China Youth Daily, 2017-06-26(8) [2021-01-01]. http://zqb.cyol.com/html/2017-06/26/nw.D110000zgqnb_20170626_1-08.htm. ] | |
[8] | 王敬东. 中国儿童肥胖筛查共识发布, 明确儿童体重超标与严重超标标准 [EB/OL]. 央视网, 2019-09-23 [2021-01-01]. http://news.cctv.com/2019/09/22/ARTIYm98cMCfYj5bNPmK2K0A190922.shtml. |
[ Wang Jingdong. The consensus on childhood obesity screening in China has been released to clarify the criteria for overweight and severely overweight children. CCTV.com, 2019-09-23 [2021-01-01]. http://news.cctv.com/2019/09/22/ARTIYm98cMCfYj5bNPmK2K0A190922.shtml. ] | |
[9] | 马淑婧, 羊柳, 赵敏, 等. 1991—2015年中国儿童青少年血压水平及高血压检出率的变化趋势[J]. 中华流行病学杂志, 2020, 41(2):178-183. |
[ Ma Shujing, Yang Liu, Zhao Min, et al. Changing trends in the levels of blood pressure and prevalence of hypertension among Chinese children and adolescents from 1991 to 2015. Chinese Journal of Epidemiology, 2020, 41(2):178-183. ] | |
[10] |
刘吉祥, 周江评, 肖龙珠, 等. 建成环境对步行通勤通学的影响: 以中国香港为例[J]. 地理科学进展, 2019, 38(6):807-817.
doi: 10.18306/dlkxjz.2019.06.002 |
[ Liu Jixiang, Zhou Jiangping, Xiao Longzhu, et al. Effects of the built environment on pedestrian communing to work and school: The Hong Kong case, China. Progress in Geography, 2019, 38(6):807-817. ] | |
[11] |
Ewing R, Cervero R. Travel and the built environment: A meta-analysis[J]. Journal of the American Planning Association, 2010, 76(3):265-294.
doi: 10.1080/01944361003766766 |
[12] |
Moran M R, Plaut P, Baron-Epel O. Do children walk where they bike? Exploring built environment correlates of children's walking and bicycling[J]. Journal of Transport and Land Use, 2015, 9(2). doi: 10.5198/jtlu.2015.556.
doi: 10.5198/jtlu.2015.556 |
[13] | Ito K, Reardon T G, Arcaya M C, et al. Built environment and walking to school: Findings from a student travel behavior survey in Massachusetts[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2666(1):78-84. |
[14] |
Rothman L, To T, Buliung R, et al. Influence of social and built environment features on children walking to school: An observational study[J]. Preventive Medicine, 2014, 60:10-15.
doi: 10.1016/j.ypmed.2013.12.005 pmid: 24333604 |
[15] | Giles-Corti B, Wood G, Pikora T, et al. School site and the potential to walk to school: The impact of street connectivity and traffic exposure in school neighborhoods[J]. Health & Place, 2011, 17(2):545-550. |
[16] |
Yang Y Y, Lu Y, Yang L C, et al. Urban greenery, active school transport, and body weight among Hong Kong children[J]. Travel Behaviour and Society, 2020, 20:104-113.
doi: 10.1016/j.tbs.2020.03.001 |
[17] |
Committee on Environmental Health, Tester J M. The built environment: Designing communities to promote physical activity in children[J]. Pediatrics, 2009, 123(6):1591-1598.
doi: 10.1542/peds.2009-0750 pmid: 19482771 |
[18] |
McDonald N C. Children's mode choice for the school trip: The role of distance and school location in walking to school[J]. Transportation, 2008, 35(1):23-35.
doi: 10.1007/s11116-007-9135-7 |
[19] |
Rothman L, Macarthur C, To T, et al. Motor vehicle-pedestrian collisions and walking to school: The role of the built environment[J]. Pediatrics, 2014, 133(5):776-784.
doi: 10.1542/peds.2013-2317 pmid: 24709929 |
[20] |
Mehdizadeh M, Nordfjaern T, Mamdoohi A R, et al. The role of parental risk judgements, transport safety attitudes, transport priorities and accident experiences on pupils' walking to school[J]. Accident Analysis & Prevention, 2017, 102:60-71.
doi: 10.1016/j.aap.2017.02.020 |
[21] |
Rossen L M, Pollack K M, Curriero F C, et al. Neighborhood incivilities, perceived neighborhood safety, and walking to school among urban-dwelling children[J]. Journal of Physical Activity and Health, 2011, 8(2):262-271.
doi: 10.1123/jpah.8.2.262 |
[22] |
Yu C-Y, Zhu X M. Impacts of residential self-selection and built environments on children's walking-to-school behaviors[J]. Environment and Behavior, 2015, 47(3):268-287.
doi: 10.1177/0013916513500959 |
[23] |
Yu C-Y, Zhu X M. From attitude to action: What shapes attitude toward walking to/from school and how does it influence actual behaviors?[J]. Preventive Medicine, 2016, 90:72-78.
doi: 10.1016/j.ypmed.2016.06.036 |
[24] |
Liu J X, Xiao L Z, Yang L C, et al. A tale of two social groups in Xiamen, China: Trip frequency of migrants and locals and its determinants[J]. Travel Behaviour and Society, 2020, 20:213-224.
doi: 10.1016/j.tbs.2020.04.001 |
[25] |
Stevens M R. Does compact development make people drive less?[J]. Journal of the American Planning Association, 2017, 83(1):7-18.
doi: 10.1080/01944363.2016.1240044 |
[26] |
Ewing R, Cervero R. "Does compact development make people drive less?" The answer is yes[J]. Journal of the American Planning Association, 2017, 83(1):19-25.
doi: 10.1080/01944363.2016.1245112 |
[27] |
Handy S. Thoughts on the meaning of Mark Stevens's meta-analysis[J]. Journal of the American Planning Association, 2017, 83(1):26-28.
doi: 10.1080/01944363.2016.1246379 |
[28] |
Ding C, Cao X Y, Wang Y P. Synergistic effects of the built environment and commuting programs on commute mode choice[J]. Transportation Research Part A: Policy and Practice, 2018, 118:104-118.
doi: 10.1016/j.tra.2018.08.041 |
[29] |
Yang L C, Ao Y B, Ke J T, et al. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults[J]. Journal of Transport Geography, 2021, 94:103099. doi: 10.1016/j.jtrangeo.2021.103099.
doi: 10.1016/j.jtrangeo.2021.103099 |
[30] |
Cheng L, Chen X W, De Vos J, et al. Applying a random forest method approach to model travel mode choice behavior[J]. Travel Behaviour and Society, 2019, 14:1-10.
doi: 10.1016/j.tbs.2018.09.002 |
[31] | Kim K, Kwon K, Horner M W. Examining the effects of the built environment on travel mode choice across different age groups in Seoul using a random forest method[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(8):670-683. |
[32] |
Parsa A B, Movahedi A, Taghipour H, et al. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis[J]. Accident Analysis & Prevention, 2020, 136:105405. doi: 10.1016/j.aap.2019.105405.
doi: 10.1016/j.aap.2019.105405 |
[33] |
Cheng L, De Vos J, Zhao P J, et al. Examining non-linear built environment effects on elderly's walking: A random forest approach[J]. Transportation Research Part D: Transport and Environment, 2020, 88:102552. doi: 10.1016/j.trd.2020.102552.
doi: 10.1016/j.trd.2020.102552 |
[34] |
Ding C, Cao X Y, Næss P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo[J]. Transportation Research Part A: Policy and Practice, 2018, 110:107-117.
doi: 10.1016/j.tra.2018.02.009 |
[35] |
Tao T, Wang J Y, Cao X Y. Exploring the non-linear associations between spatial attributes and walking distance to transit[J]. Journal of Transport Geography, 2020, 82:102560. doi: 10.1016/j.jtrangeo.2019.102560.
doi: 10.1016/j.jtrangeo.2019.102560 |
[36] |
Wu X Y, Cao X Y, Ding C. Exploring rider satisfaction with arterial BRT: An application of impact asymmetry analysis[J]. Travel Behaviour and Society, 2020, 19:82-89.
doi: 10.1016/j.tbs.2019.12.006 |
[37] | 自然资源保护协会, 清华大学建筑学院. 中国城市步行友好性评价: 基于街道功能促进步行的研究[R]. 北京, 2017. |
[Natural Resources Defense Council, School of Architecture of Tsinghua University. Appraisal of walking friendliness of Chinese cities. Beijing, China. 2017. ] | |
[38] |
Song Y, Merlin L, Rodriguez D. Comparing measures of urban land use mix[J]. Computers, Environment and Urban Systems, 2013, 42:1-13.
doi: 10.1016/j.compenvurbsys.2013.08.001 |
[39] |
Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C/OL]// KDD '16: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco, USA: Association for Computing Machinery, 2016:785-794. doi: 10.1145/2939672.2939785.
doi: 10.1145/2939672.2939785 |
[40] | Hox J. Multilevel modeling: When and why. Classification, data analysis, and data highways[M]. Berlin, Germany: Springer. 1998: 147-154. |
[41] |
Friedman J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232.
doi: 10.1214/aos/1013203450 |
[42] |
Su S L, Pi J H, Xie H, et al. Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion[J]. Land Use Policy, 2017, 67:315-326.
doi: 10.1016/j.landusepol.2017.06.005 |
[43] | 厦门市统计局. 2020厦门经济特区年鉴[M]. 厦门: 厦门市统计局, 2020. |
[Xiamen Burear of Statistics. Statistic yearbook of Xiamen Special Economic Zone in 2020. Xiamen, China: Xiamen Burear of Statistics, 2020.] | |
[44] |
Lin P F, Weng J C, Brands D K, et al. Analysing the relationship between weather, built environment, and public transport ridership[J]. IET Intelligent Transport Systems, 2020, 14(14):1946-1954.
doi: 10.1049/itr2.v14.14 |
|