PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (12): 2035-2047.doi: 10.18306/dlkxjz.2021.12.005
• Articles • Previous Articles Next Articles
TONG De1(), ZHOU Xincan1, GONG Yongxi2,*(
)
Received:
2021-01-06
Revised:
2021-04-09
Online:
2021-12-28
Published:
2022-02-28
Contact:
GONG Yongxi
E-mail:tongde@pkusz.edu.cn;gongyx@hit.edu.cn
Supported by:
TONG De, ZHOU Xincan, GONG Yongxi. Car-sharing travel patterns in Shanghai based on big data[J].PROGRESS IN GEOGRAPHY, 2021, 40(12): 2035-2047.
Tab.3
Summary of cluster indicator
类型 | 指标 | 指标描述 | |
---|---|---|---|
空间特征 | 取车地功能区特征 | 混合功能区 | 取车地中混合功能区所占比例 |
居住功能区 | 取车地中居住功能区所占比例 | ||
工作功能区 | 取车地中工作功能区所占比例 | ||
休闲功能区 | 取车地中休闲功能区所占比例 | ||
教育医疗功能区 | 取车地中教育医疗功能区所占比例 | ||
还车地功能区特征 | 混合功能区 | 还车地中混合功能区所占比例 | |
居住功能区 | 还车地中居住功能区所占比例 | ||
工作功能区 | 还车地中工作功能区所占比例 | ||
休闲功能区 | 还车地中休闲功能区所占比例 | ||
教育医疗功能区 | 还车地中教育医疗功能区所占比例 | ||
时间特征 | 时点 | 凌晨 | 3:00~7:00间出行次数所占比例 |
早高峰 | 7:00~11:00间出行次数所占比例 | ||
午间 | 11:00~17:00间出行次数所占比例 | ||
晚高峰 | 17:00~20:00间出行次数所占比例 | ||
夜晚 | 20:00~24:00间出行次数所占比例 | ||
半夜 | 0:00~3:00间出行次数所占比例 | ||
时长 | 平均出行时长 | 平均出行时长 | |
出行频次 | 研究期内日均出行次数 |
Tab.4
Car-sharing users’ clustering results of travel pattern on weekdays
类型 | 指标 | 类型1 通勤高频模式 | 类型2 夜间高频模式 | 类型3 夜间低频模式 | 类型4 全时段低频模式 | 类型5 晚高峰低频模式 | 类型6 通勤中频模式 | ||
---|---|---|---|---|---|---|---|---|---|
空间特征 | 取车地 功能区特征 | 混合 | 0.22 | 0.57 | 0.50 | 0.95 | 0.29 | 0.29 | |
居住 | 0.11 | 0.16 | 0.12 | 0.02 | 0.15 | 0.11 | |||
工作 | 0.23 | 0.06 | 0.12 | 0.01 | 0.20 | 0.22 | |||
休闲 | 0.19 | 0.12 | 0.14 | 0.01 | 0.18 | 0.19 | |||
教育医疗 | 0.18 | 0.07 | 0.09 | 0.01 | 0.14 | 0.15 | |||
还车地 功能区特征 | 混合 | 0.20 | 0.62 | 0.51 | 0.95 | 0.30 | 0.28 | ||
居住 | 0.10 | 0.11 | 0.11 | 0.01 | 0.16 | 0.09 | |||
工作 | 0.21 | 0.07 | 0.10 | 0.01 | 0.16 | 0.22 | |||
休闲 | 0.25 | 0.11 | 0.14 | 0.01 | 0.19 | 0.20 | |||
教育医疗 | 0.18 | 0.06 | 0.03 | 0.01 | 0.15 | 0.15 | |||
时间特征 | 时点 | 凌晨 | 0.06 | 0.13 | 0.01 | 0.08 | 0.01 | 0.13 | |
早高峰 | 0.22 | 0.03 | 0.01 | 0.16 | 0.01 | 0.59 | |||
中午 | 0.24 | 0.04 | 0.01 | 0.27 | 0.01 | 0.05 | |||
晚高峰 | 0.29 | 0.05 | 0.03 | 0.29 | 0.93 | 0.05 | |||
夜晚 | 0.15 | 0.40 | 0.90 | 0.07 | 0.03 | 0.04 | |||
半夜 | 0.03 | 0.35 | 0.03 | 0.11 | 0.01 | 0.13 | |||
时长 | 平均时长/min | 78.12 | 43.52 | 73.20 | 97.48 | 108.88 | 102.48 | ||
出行频次 | 人均出行/(次/d) | 0.698 | 0.602 | 0.136 | 0.128 | 0.126 | 0.356 | ||
各类型人数/人 | 2394 | 2200 | 7744 | 9622 | 6781 | 6979 |
Tab.5
Car-sharing users' clustering results of travel pattern on weekends
类型 | 指标 | 类型1: 日间高频 模式 | 类型2: 晚间低频 模式 | 类型3: 日间加班 低频模式 | 类型4: 晚间休闲 低频模式 | |
---|---|---|---|---|---|---|
空间特征 | 取车地功能区特征 | 混合 | 0.47 | 0.93 | 0.08 | 0.08 |
居住 | 0.17 | 0.02 | 0.03 | 0.04 | ||
工作 | 0.11 | 0.01 | 0.46 | 0.02 | ||
休闲 | 0.13 | 0.01 | 0.02 | 0.81 | ||
教育医疗 | 0.09 | 0.02 | 0.36 | 0.03 | ||
还车地功能区特征 | 混合 | 0.46 | 0.09 | 0.34 | 0.30 | |
居住 | 0.17 | 0.30 | 0.11 | 0.12 | ||
工作 | 0.11 | 0.19 | 0.21 | 0.07 | ||
休闲 | 0.14 | 0.22 | 0.09 | 0.39 | ||
教育医疗 | 0.09 | 0.17 | 0.20 | 0.08 | ||
时间特征 | 时点 | 凌晨 | 0.07 | 0.08 | 0.04 | 0.05 |
早高峰 | 0.15 | 0.15 | 0.18 | 0.17 | ||
中午 | 0.25 | 0.14 | 0.31 | 0.10 | ||
晚高峰 | 0.23 | 0.32 | 0.25 | 0.24 | ||
夜晚 | 0.19 | 0.20 | 0.15 | 0.36 | ||
半夜 | 0.10 | 0.11 | 0.06 | 0.07 | ||
时长 | 平均时长/min | 49.95 | 63.56 | 82.67 | 80.32 | |
出行频次 | 人均出行/(次/d) | 1.059 | 0.298 | 0.234 | 0.247 | |
各类型人数/人 | 5144 | 9378 | 6897 | 5466 |
[1] | 孙守恒, 王维才. 基于因子分析的城市汽车共享环境评价[J]. 经济地理, 2017, 37(6):84-91. |
[ Sun Shouheng, Wang Weicai. Evaluation of car sharing environment in cities based on factor analysis. Economic Geography, 2017, 37(6):84-91. ] | |
[2] |
Amatuni L, Ottelin J, Steubing B, et al. Does car sharing reduce greenhouse gas emissions? Assessing the modal shift and lifetime shift rebound effects from a life cycle perspective[J]. Journal of Cleaner Production, 2020, 266:121869. doi: 10.1016/j.jclepro.2020.121869.
doi: 10.1016/j.jclepro.2020.121869 |
[3] |
Chapman D A, Eyckmans J, van Acker K. Does car-sharing reduce car-use? An impact evaluation of car-sharing in Flanders, Belgium[J]. Sustainability, 2020, 12(19):8155. doi: 10.3390/su12198155.
doi: 10.3390/su12198155 |
[4] |
Tsuji K, Kurisu K, Nakatani J, et al. Evaluation of environmental impact of car sharing in consideration of uncertainty of influential variables[J]. International Journal of Automation Technology, 2020, 14(6):975-983.
doi: 10.20965/ijat.2020.p0975 |
[5] | 邵滢璐, 李昕阳, 姚立. “出行即服务”系统下的城市空间影响探析[J]. 城市发展研究, 2019, 26(S1):60-64. |
[ Shao Yinglu, Li Xinyang, Yao Li. Exploring the influence of MaaS on urban space. Urban Development Studies, 2019, 26(S1):60-64. ] | |
[6] |
Illgen S, Höck M. Establishing car sharing services in rural areas: A simulation-based fleet operations analysis[J]. Transportation, 2020, 47(2):811-826.
doi: 10.1007/s11116-018-9920-5 |
[7] |
曹小曙, 胡培婷, 刘丹. 电动汽车充电站选址研究进展[J]. 地理科学进展, 2019, 38(1):139-152.
doi: 10.18306/dlkxjz.2019.01.012 |
[ Cao Xiaoshu, Hu Peiting, Liu Dan. Progress of research on electric vehicle charging stations. Progress in Geography, 2019, 38(1):139-152. ] | |
[8] | 孙小慧, 刘锴, 左志. 考虑时空间限制的电动汽车充电站布局模型[J]. 地理科学进展, 2012, 31(6):686-692. |
[ Sun Xiaohui, Liu Kai, Zuo Zhi. A spatiotemporal location model for locating electric vehicle charging stations. Progress in Geography, 2012, 31(6):686-692. ] | |
[9] |
Hu S H, Chen P, Lin H F, et al. Promoting carsharing attractiveness and efficiency: An exploratory analysis[J]. Transportation Research Part D: Transport and Environment, 2018, 65:229-243.
doi: 10.1016/j.trd.2018.08.015 |
[10] | Chen X H, Cheng J Q, Ye J H, et al. Locating station of one-way carsharing based on spatial demand characteristics[J]. Journal of Advanced Transportation, 2018, 2018:1-16. |
[11] |
Becker H, Ciari F, Axhausen K W. Modeling free-floating car-sharing use in Switzerland: A spatial regression and conditional logit approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 81:286-299.
doi: 10.1016/j.trc.2017.06.008 |
[12] |
Kim K. Can carsharing meet the mobility needs for the low-income neighborhoods? Lessons from carsharing usage patterns in New York City[J]. Transportation Research Part A: Policy and Practice, 2015, 77:249-260.
doi: 10.1016/j.tra.2015.04.020 |
[13] |
Awasthi A, Breuil D, Chauhan S S, et al. A multicriteria decision making approach for carsharing stations selection[J]. Journal of Decision Systems, 2007, 16(1):57-78.
doi: 10.3166/jds.16.57-78 |
[14] |
Brandstätter G, Leitner M, Ljubić I. Location of charging stations in electric car sharing systems[J]. Transportation Science, 2020, 54(5):1408-1438.
doi: 10.1287/trsc.2019.0931 |
[15] | Cohen A, Shaheen S. Planning for shared mobility [R]. Planning Advisory Service Report 583. Berkeley, USA:Transportation Sustainability Research Center, University of California, 2018: 34-47. |
[16] | Shaheen S, Cohen A, Yelchuru B, et al. Mobility on demand operational concept report [R]. FHWA-JPO-18-611. Richmond, USA: Transportation Sustainability Research Center, University of California Richmond Field Station, 2017. |
[17] | 王羽. 共享经济商业模式研究: 以汽车共享为例[D]. 长春: 吉林大学, 2019. |
[ Wang Yu. A study on the business model of sharing economy: Take car sharing as an example. Changchun, China: Jilin University, 2019. ] | |
[18] | Wielinski G, Trépanier M, Morency C. What about free-floating carsharing? A look at the Montreal, Canada, case[J]. Transportation Research Record, 2015, 2563(1):28-36. |
[19] |
Schaefers T. Exploring carsharing usage motives: A hierarchical means-end chain analysis[J]. Transportation Research Part A: Policy and Practice, 2013, 47:69-77.
doi: 10.1016/j.tra.2012.10.024 |
[20] | Xie K X, Deng K, Zhou X F. From trajectories to activities: A spatio-temporal join approach [C]// Proceedings of the 2009 international workshop on location based social networks. New York, USA: ACM, 2009: 25-32. |
[21] |
de Lorimier A, El-Geneidy A M. Understanding the factors affecting vehicle usage and availability in carsharing networks: A case study of communauto carsharing system from Montréal, Canada[J]. International Journal of Sustainable Transportation, 2013, 7(1):35-51.
doi: 10.1080/15568318.2012.660104 |
[22] |
Costain C, Ardron C, Habib K N. Synopsis of users' behaviour of a carsharing program: A case study in Toronto[J]. Transportation Research Part A: Policy and Practice, 2012, 46(3):421-434.
doi: 10.1016/j.tra.2011.11.005 |
[23] |
Li W B, Kamargianni M. Steering short-term demand for car-sharing: A mode choice and policy impact analysis by trip distance[J]. Transportation, 2020, 47(5):2233-2265.
doi: 10.1007/s11116-019-10010-0 |
[24] |
Gong L, Liu X, Wu L, et al. Inferring trip purposes and uncovering travel patterns from taxi trajectory data[J]. Cartography and Geographic Information Science, 2016, 43(2):103-114.
doi: 10.1080/15230406.2015.1014424 |
[25] |
Daraio E, Cagliero L, Chiusano S, et al. Predicting car availability in free floating car sharing systems: Leveraging machine learning in challenging contexts[J]. Electronics, 2020, 9(8):1322. doi: 10.3390/electronics9081322.
doi: 10.3390/electronics9081322 |
[26] |
甄峰, 席广亮, 秦萧. 基于地理视角的智慧城市规划与建设的理论思考[J]. 地理科学进展, 2015, 34(4):402-409.
doi: 10.11820/dlkxjz.2015.04.001 |
[ Zhen Feng, Xi Guangliang, Qin Xiao. Smart city planning and construction based on geographic perspectives: Some theoretical thinking. Progress in Geography, 2015, 34(4):402-409. ] | |
[27] |
钟炜菁, 王德, 谢栋灿, 等. 上海市人口分布与空间活动的动态特征研究: 基于手机信令数据的探索[J]. 地理研究, 2017, 36(5):972-984.
doi: 10.11821/dlyj201705013 |
[ Zhong Weijing, Wang De, Xie Dongcan, et al. Dynamic characteristics of Shanghai's population distribution using cell phone signaling data. Geographical Research, 2017, 36(5):972-984. ] | |
[28] | 郝新华, 周素红, 彭伊侬, 等. 广州市低收入群体户外活动的时空排斥及其影响机制[J]. 人文地理, 2018, 33(3):97-103, 111. |
[ Hao Xinhua, Zhou Suhong, Peng Yinong, et al. Spatial-temporal exclusion characteristics and influencing mechanism of low-income residents' outdoor activity in Guangzhou. Human Geography, 2018, 33(3):97-103, 111. ] | |
[29] |
王丰龙, 王冬根. 北京市居民汽车使用的特征及其影响因素[J]. 地理学报, 2014, 69(6):771-781.
doi: 10.11821/dlxb201406005 |
[ Wang Feng-long, Wang Donggen. Characteristics and determinants of car use in Beijing. Acta Geographica Sinica, 2014, 69(6):771-781. ] | |
[30] | 吴建华, 万洋洋. 利用泰森多边形的点实体匹配算法[J]. 测绘科学, 2015, 40(4):97-100, 120. |
[ Wu Jianhua, Wan Yangyang. Point entity matching algorithm based on Thiessen polygon. Science of Surveying and Mapping, 2015, 40(4):97-100, 120. ] | |
[31] | 华夏幸福产业研究院. 中国都市圈极限通勤研究 [M]. 北京: 清华大学出版社, 2019. |
[China Happiness Industry Research Institute. Study of extreme commuting in China's metropolitan region. Beijing, China: Tsinghua University Press, 2019. ] | |
[32] | Han J, Kamber M. 数据挖掘概念与技术 [M]. 范明, 孟小峰, 等译. 北京: 机械工业出版社, 2006: 185-217. |
[ Han J, Kamber M. Concepts and techniques of data Mining. Translated by Fan Ming, Meng Xiaofeng, et al. Beijing, China: China Machine Press, 2006: 185-217. ] | |
[33] |
王勇, 解延京, 刘荣, 等. 北上广深城市人口预测及其资源配置[J]. 地理学报, 2021, 76(2):352-366.
doi: 10.11821/dlxb202102008 |
[ Wang Yong, Xie Yanjing, Liu Rong, et al. Population prediction and resource allocation in megacities from the optimum population perspective: A case study of Beijing, Shanghai, Guangzhou and Shenzhen. Acta Geographica Sinica, 2021, 76(2):352-366. ] |
|