PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (10): 1746-1760.doi: 10.18306/dlkxjz.2021.10.011
• Reviews • Previous Articles Next Articles
JIAN Yiwei1,2(), FU Jin1,2, ZHOU Feng1,2,*(
)
Received:
2020-11-01
Revised:
2021-06-24
Online:
2021-10-28
Published:
2021-12-28
Contact:
ZHOU Feng
E-mail:ywjian@pku.edu.cn;zhouf@pku.edu.cn
Supported by:
JIAN Yiwei, FU Jin, ZHOU Feng. A review of studies on the impacts of extreme precipitation on rice yields[J].PROGRESS IN GEOGRAPHY, 2021, 40(10): 1746-1760.
Tab.1
Comparison of the current main methods in evaluating effects of extreme precipitation on crop yields
名称 | 研究内容 | 数据 | 优点 | 缺点 | 典型方法 |
---|---|---|---|---|---|
统计模型 | 作物生育期内气候因素对作物产量的影响 | 长期历史观测数据(气候变量、作物产量) | 模型简单,运行成本小;隐含农民适应性行为及作物生理响应 | 模型共线性问题;模型缺乏解释,不便外推 | 相关分析;线性回归;面板回归 |
作物机理模型 | 不同气候情景下作物产量的预测 | 基于田间实验的参数率定,特定点位的输入数据(气候变量、生理指标等) | 模拟作物生长生理机制;在更精细的空间尺度上评估气候因素及适应性措施的影响 | 模型复杂,参数率定难;未考虑适应性行为,不能反映社会经济反馈;模拟极端降水条件弱 | ORYZA2000; CERES-rice; DSSAT |
控制实验 | 作物生长对气候因子的响应及敏感性 | 实验观测数据(作物生长性状、产量组成等) | 对作物响应过程及影响途径进行分析 | 数据获取难;结果稳定性差;难排除协变量 | 梯度增温;人工气候室;人工降水 |
计量经济模型 | 气候因素与生产要素投入对作物产量的影响 | 长期历史观测数据(气候变量、作物产量、生产要素投入) | 考虑社会经济反馈 | 遗漏变量偏误;前提假设过多,难以构建符合实际的生产函数 | 生产函数法;经济气候模型 |
[1] |
Iizumi T, Ramankutty N. Changes in yield variability of major crops for 1981-2010 explained by climate change[J]. Environmental Research Letters, 2016, 11(3):034003. doi: 10.1088/1748-9326/11/3/034003.
doi: 10.1088/1748-9326/11/3/034003 |
[2] |
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529:84-87.
doi: 10.1038/nature16467 |
[3] |
Myhre G, Alterskjær K, Stjern C W, et al. Frequency of extreme precipitation increases extensively with event rareness under global warming[J]. Scientific Reports, 2019, 9:16063. doi: 10.1038/s41598-019-52277-4.
doi: 10.1038/s41598-019-52277-4 pmid: 31690736 |
[4] | IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge University Press, 2012. |
[5] |
Donat M G, Lowry A L, Alexander L V, et al. Addendum: More extreme precipitation in the world's dry and wet regions[J]. Nature Climate Change, 2016, 6:508-513.
doi: 10.1038/nclimate2941 |
[6] |
Lesk C, Coffel E, Horton R. Net benefits to US soy and maize yields from intensifying hourly rainfall[J]. Nature Climate Change, 2020, 10:819-822.
doi: 10.1038/s41558-020-0830-0 |
[7] |
Rosenzweig C, Karoly D, Vicarelli M, et al. Attributing physical and biological impacts to anthropogenic climate change[J]. Nature, 2008, 453:353-357.
doi: 10.1038/nature06937 |
[8] | 王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5):611-625. |
[ Wang Qiong, Zhang Mingjun, Wang Shengjun, et al. Extreme temperature events in Yangtze River Basin during 1962-2011. Acta Geographica Sinica, 2013, 68(5):611-625. ] | |
[9] |
Tubiello F N, Soussana J F, Howden S M. Crop and pasture response to climate change[J]. PNAS, 2007, 104(50):19686-19690.
doi: 10.1073/pnas.0701728104 |
[10] |
Ray D K, Gerber J S, MacDonald G K, et al. Climate variation explains a third of global crop yield variability[J]. Nature Communications, 2015, 6:5989. doi: 10.1038/ncomms6989.
doi: 10.1038/ncomms6989 |
[11] |
Vogel E, Donat M G, Alexander L V, et al. The effects of climate extremes on global agricultural yields[J]. Environmental Research Letters, 2019, 14(5):054010. doi: 10.1088/1748-9326/ab154b.
doi: 10.1088/1748-9326/ab154b |
[12] | Evans T L, Mata-González R, Martin D W, et al. Growth, water productivity, and biomass allocation of Great Basin plants as affected by summer watering[J]. Ecohydrology, 2013, 6(5):713-721. |
[13] |
Li Y, Guan K Y, Schnitkey G D, et al. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States[J]. Global Change Biology, 2019, 25(7):2325-2337.
doi: 10.1111/gcb.2019.25.issue-7 |
[14] |
Choi W J, Lee M S, Choi J E, et al. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine[J]. Global Change Biology, 2013, 19(4):1300-1310.
doi: 10.1111/gcb.12110 |
[15] |
Mills G, Sharps K, Simpson D, et al. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance[J]. Global Change Biology, 2018, 24(10):4869-4893.
doi: 10.1111/gcb.14381 pmid: 30084165 |
[16] |
Huang J, Zhang F M, Zhou L M, et al. Regional changes of climate extremes and its effect on rice yield in Jiangsu Province, southeast China[J]. Environmental Earth Sciences, 2018, 77(3):106. doi: 10.1007/s12665-018-7295-8.
doi: 10.1007/s12665-018-7295-8 |
[17] |
Li M F, Luo W, Li H L, et al. Daily extreme precipitation indices and their impacts on rice yield: A case study over the tropical island in China[J]. Theoretical and Applied Climatology, 2018, 132(1/2):503-513.
doi: 10.1007/s00704-017-2055-3 |
[18] | IPCC. Intergovernmental panel on climate change climate change 2013: Fifth assessment report (AR5)[M]. Cambridge, UK: Cambridge University Press, 2013. |
[19] | 孔锋, 史培军, 方建, 等. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J]. 灾害学, 2017, 32(2):165-174. |
[ Kong Feng, Shi Peijun, Fang Jian, et al. Advances and prospects of spatiotemporal pattern variation of extreme precipitation and its affecting factors under the background of global climate change. Journal of Catastrophology, 2017, 32(2):165-174. ] | |
[20] | 李建, 宇如聪, 孙溦, 中国大陆地区小时极端降水阈值的计算与分析[J]. 暴雨灾害, 2013, 32(1):11-16. |
[ Li Jian, Yu Rucong, Sun Wei. Calculation and analysis of the thresholds of hourly extreme precipitation in Mainland China. Torrential Rain and Disasters, 2013, 32(1):11-16. ] | |
[21] |
Jian Y W, Fu J, Li B G, et al. Increased extreme hourly precipitation over China's rice paddies from 1961 to 2012[J]. Scientific Reports, 2020, 10:10609. doi: 10.1038/s41598-020-67429-0.
doi: 10.1038/s41598-020-67429-0 |
[22] |
Fischer E M, Knutti R. Detection of spatially aggregated changes in temperature and precipitation extremes[J]. Geophysical Research Letters, 2014, 41(2):547-554.
doi: 10.1002/2013GL058499 |
[23] |
Sheikh M M, Manzoor N, Ashraf J, et al. Trends in extreme daily rainfall and temperature indices over South Asia[J]. International Journal of Climatology, 2015, 35(7):1625-1637.
doi: 10.1002/joc.2015.35.issue-7 |
[24] |
Sen Roy S. A spatial analysis of extreme hourly precipitation patterns in India[J]. International Journal of Climatology, 2009, 29(3):345-355.
doi: 10.1002/joc.v29:3 |
[25] | Manton M J, Stevenson L A. Climate in Asia and the pacific: Security, society and sustainability[M]. Berlin, Germany: Springer, 2013: 18-57. |
[26] |
Cheong W K, Timbal B, Golding N, et al. Observed and modelled temperature and precipitation extremes over Southeast Asia from 1972 to 2010[J]. International Journal of Climatology, 2018, 38(7):3013-3027.
doi: 10.1002/joc.2018.38.issue-7 |
[27] |
Sen Roy S, Rouault M. Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa[J]. Applied Geography, 2013, 39:151-157.
doi: 10.1016/j.apgeog.2012.11.022 |
[28] |
Zandonadi L, Acquaotta F, Fratianni S, et al. Changes in precipitation extremes in Brazil (Paraná River Basin)[J]. Theoretical and Applied Climatology, 2016, 123(3/4):741-756.
doi: 10.1007/s00704-015-1391-4 |
[29] |
Syafrina A H, Zalina M D, Juneng L. Historical trend of hourly extreme rainfall in Peninsular Malaysia[J]. Theoretical and Applied Climatology, 2015, 120(1/2):259-285.
doi: 10.1007/s00704-014-1145-8 |
[30] | 李娟, 董文杰, 严中伟. 中国东部1960—2008年夏季极端温度与极端降水的变化及其环流背景[J]. 科学通报, 2012, 57(8):641-646. |
[ Li Juan, Dong Wenjie, Yan Zhongwei. The change of extreme temperature and extreme precipitation and their circulation background in the summer of 1960-2008 in eastern China. Chinese Science Bulletin, 2012, 57(8):641-646. ] | |
[31] |
李双双, 杨赛霓, 刘宪锋. 1960—2013年秦岭—淮河南北极端降水时空变化特征及其影响因素[J]. 地理科学进展, 2015, 34(3):354-363.
doi: 10.11820/dlkxjz.2015.03.010 |
[ Li Shuangshuang, Yang Saini, Liu Xianfeng. Spatiotemporal variability of extreme precipitation in north and south of the Qinling-Huaihe region and influencing factors during 1960-2013. Progress in Geography, 2015, 34(3):354-363. ] | |
[32] | 徐影, 张冰, 周波涛, 等. 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估[J]. 气候变化研究进展, 2014, 10(4):268-275. |
[ Xu Ying, Zhang Bing, Zhou Botao, et al. Projected risk of flooding disaster in China based on CMIP5 models. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(4):268-275. ] | |
[33] |
Zhang H, Zhai P M. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season[J]. Advances in Atmospheric Sciences, 2011, 28(5):1177-1183.
doi: 10.1007/s00376-011-0020-0 |
[34] |
Prabnakorn S, Maskey S, Suryadi F X, et al. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand[J]. Science of the Total Environment, 2018, 621:108-119.
doi: 10.1016/j.scitotenv.2017.11.136 |
[35] |
Parkes B, Higginbottom T P, Hufkens K, et al. Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change[J]. Environmental Research Letters, 2019, 14(12):124089. doi: 10.1088/1748-9326/ab5ebb.
doi: 10.1088/1748-9326/ab5ebb |
[36] |
Kunimitsu Y, Kudo R. Fluctuations in rice productivity caused by long and heavy rain under climate change in Japan: Evidence from panel data regression analysis[J]. Japan Agricultural Research Quarterly, 2015, 49(2):159-172.
doi: 10.6090/jarq.49.159 |
[37] |
Blanc E, Strobl E. Assessing the impact of typhoons on rice production in the Philippines[J]. Journal of Applied Meteorology and Climatology, 2016, 55(4):993-1007.
doi: 10.1175/JAMC-D-15-0214.1 |
[38] |
Revadekar J V, Preethi B. Statistical analysis of the relationship between summer monsoon precipitation extremes and foodgrain yield over India[J]. International Journal of Climatology, 2012, 32(3):419-429.
doi: 10.1002/joc.2282 |
[39] |
Subash N, Singh S S, Priya N. Extreme rainfall indices and its impact on rice productivity: A case study over sub-humid climatic environment[J]. Agricultural Water Management, 2011, 98(9):1373-1387.
doi: 10.1016/j.agwat.2011.04.003 |
[40] |
Auffhammer M, Ramanathan V, Vincent J R. Climate change, the monsoon, and rice yield in India[J]. Climatic Change, 2012, 111(2):411-424.
doi: 10.1007/s10584-011-0208-4 |
[41] |
Yang L C, Qin Z H, Tu L L. Responses of rice yields in different rice-cropping systems to climate variables in the middle and lower reaches of the Yangtze River, China[J]. Food Security, 2015, 7(5):951-963.
doi: 10.1007/s12571-015-0497-y |
[42] |
Abbas S, Mayo Z A. Impact of temperature and rainfall on rice production in Punjab, Pakistan[J]. Environment, Development and Sustainability, 2021, 23(2):1706-1728.
doi: 10.1007/s10668-020-00647-8 |
[43] |
Alam M M, Siwar C, Talib B, et al. Impacts of climatic changes on paddy production in Malaysia: Micro study on IADA at North West Selangor[J]. Research Journal of Environmental and Earth Sciences, 2014, 6:251-258.
doi: 10.19026/rjees.6.5767 |
[44] |
Le T T H. Effects of climate change on rice yield and rice market in Vietnam[J]. Journal of Agricultural and Applied Economics, 2016, 48(4):366-382.
doi: 10.1017/aae.2016.21 |
[45] |
Tao F L, Zhang Z, Zhang S, et al. Response of crop yields to climate trends since 1980 in China[J]. Climate Research, 2012, 54(3):233-247.
doi: 10.3354/cr01131 |
[46] |
Huang J, Lei Y D, Zhang F M, et al. Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu Province, Southeast China[J]. Food Security, 2017, 9(4):661-672.
doi: 10.1007/s12571-017-0689-8 |
[47] | 徐阳, 孙莉娟, 黄进, 等. 近50年江苏省极端降水时空变化及其对单季稻产量的影响[J]. 广东农业科学, 2017, 44(8):139-144. |
[ Xu Yang, Sun Lijuan, Huang Jin, et al. Spatio-temporal variation of extreme precipitation during recent 50 years in Jiangsu Province and its influence on single-crop rice yield. Guangdong Agricultural Sciences, 2017, 44(8):139-144. ] | |
[48] |
Chen H L, Liang Z Y, Liu Y, et al. Effects of drought and flood on crop production in China across 1949-2015: Spatial heterogeneity analysis with Bayesian hierarchical modeling[J]. Natural Hazards, 2018, 92(1):525-541.
doi: 10.1007/s11069-018-3216-0 |
[49] |
Chen X X, Wang L C, Niu Z G, et al. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China[J]. Agricultural and Forest Meteorology, 2020, 282/283:107867. doi: 10.1016/j.agrformet.2019.107867.
doi: 10.1016/j.agrformet.2019.107867 |
[50] | 王慧芳, 吴立, 栾庆祖, 等. 1971─2012年长江中下游地区水稻洪涝时空分布特征[J]. 灌溉排水学报, 2019, 38(4):100-107. |
[ Wang Huifang, Wu Li, Luan Qingzu, et al. Spatiotemporal distribution of flooding events at paddy fields in the middle-low reaches of the Yangtze River. Journal of Irrigation and Drainage, 2019, 38(4):100-107. ] | |
[51] |
Yang J Y, Huo Z G, Wu L, et al. Indicator-based evaluation of spatiotemporal characteristics of rice flood in Southwest China[J]. Agriculture, Ecosystems & Environment, 2016, 230:221-230.
doi: 10.1016/j.agee.2016.06.008 |
[52] |
Shi W J, Wang M L, Liu Y T. Crop yield and production responses to climate disasters in China[J]. Science of the Total Environment, 2021, 750:141147. doi: 10.1016/j.scitotenv.2020.141147.
doi: 10.1016/j.scitotenv.2020.141147 |
[53] |
Monfreda C, Ramankutty N, Foley J A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000[J]. Global Biogeochemical Cycles, 2008, 22(1). doi: 10.1029/2007GB002947.
doi: 10.1029/2007GB002947 |
[54] |
Rötter R P, Appiah M, Fichtler E, et al. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes: A review[J]. Field Crops Research, 2018, 221:142-156.
doi: 10.1016/j.fcr.2018.02.023 |
[55] |
Rosenzweig C, Elliott J, Deryng D, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J]. PNAS, 2014, 111(9):3268-3273.
doi: 10.1073/pnas.1222463110 pmid: 24344314 |
[56] | 邓爱娟, 刘敏, 万素琴, 等. 湖北省双季稻生长季降水及洪涝变化特征[J]. 长江流域资源与环境, 2012, 21(S1):173-178. |
[ Deng Aijuan, Liu Min, Wan Suqin, et al. Characteristics and impact of rain and floods on double-cropping rice growing seasons in Hubei. Resources and Environment in the Yangtze Basin, 2012, 21(S1):173-178. ] | |
[57] |
Zampieri M, Ceglar A, Dentener F, et al. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales[J]. Environmental Research Letters, 2017, 12(6):064008. doi: 10.1088/1748-9326/aa723b.
doi: 10.1088/1748-9326/aa723b |
[58] | 熊怀阳, 阳菁, 安保光, 等. 水稻适应淹水胁迫的分子机理及品种改良[J]. 武汉大学学报(理学版), 2013, 59(1):17-23. |
[ Xiong Huaiyang, Yang Jing, An Baoguang, et al. Molecular mechanism of rice adaptation and improvement strategies to submergence stress. Journal of Wuhan University (Natural Science Edition), 2013, 59(1):17-23. ] | |
[59] |
Bailey-Serres J, Fukao T, Ronald P, et al. Submergence tolerant rice: SUB1's journey from landrace to modern cultivar[J]. Rice, 2010, 3(2/3):138-147.
doi: 10.1007/s12284-010-9048-5 |
[60] |
Barbier F F, Dun E A, Kerr S C, et al. An update on the signals controlling shoot branching[J]. Trends in Plant Science, 2019, 24(3):220-236.
doi: 10.1016/j.tplants.2018.12.001 |
[61] | Parent C, Capelli N, Berger A, et al. An overview of plant responses to soil waterlogging[J]. Plant Stress, 2008, 2(1):20-27. |
[62] |
Shaw R E, Meyer W S. Improved empirical representation of plant responses to waterlogging for simulating crop yield[J]. Agronomy Journal, 2015, 107(5):1711-1723.
doi: 10.2134/agronj14.0625 |
[63] | 宁金花, 霍治国, 陆魁东, 等. 不同生育期淹涝胁迫对杂交稻形态特征和产量的影响[J]. 中国农业气象, 2013, 34(6):678-684. |
[ Ning Jinhua, Huo Zhiguo, Lu Kuidong, et al. Effects of water logging on morphological characteristics and yield of hybrid rice during growth stages. Chinese Journal of Agrometeorology, 2013, 34(6):678-684. ] | |
[64] |
Shah A N, Tanveer M, Rehman A U, et al. Lodging stress in cereal-effects and management: An overview[J]. Environmental Science and Pollution Research, 2017, 24(6):5222-5237.
doi: 10.1007/s11356-016-8237-1 |
[65] |
Hitaka N. Experimental studies on the mechanisms of lodging and of its effect on yield in rice plants[J]. Journal of Agricultural Meteorology, 1970, 26(1):35-36.
doi: 10.2480/agrmet.26.35 |
[66] |
Setter T L, Laureles E V, Mazaredo A M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynjournal[J]. Field Crops Research, 1997, 49:95-106.
doi: 10.1016/S0378-4290(96)01058-1 |
[67] |
Bisbis M B, Gruda N, Blanke M. Potential impacts of climate change on vegetable production and product quality: A review[J]. Journal of Cleaner Production, 2018, 170:1602-1620.
doi: 10.1016/j.jclepro.2017.09.224 |
[68] |
Zheng W B, Wang S Q, Tan K D, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707:136168. doi: 10.1016/j.scitotenv.2019.136168.
doi: 10.1016/j.scitotenv.2019.136168 |
[69] |
Abbas F, Rehman I, Adrees M, et al. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan[J]. Theoretical and Applied Climatology, 2018, 131(3/4):1101-1117.
doi: 10.1007/s00704-016-2028-y |
[70] |
Troy T J, Kipgen C, Pal I. The impact of climate extremes and irrigation on US crop yields[J]. Environmental Research Letters, 2015, 10(5):054013. doi: 10.1088/1748-9326/10/5/054013.
doi: 10.1088/1748-9326/10/5/054013 |
[71] |
Lee M S, Kang B M, Lee J E, et al. How do extreme wet events affect rice quality in a changing climate?[J]. Agriculture, Ecosystems & Environment, 2013, 171:47-54.
doi: 10.1016/j.agee.2013.03.006 |
[72] |
Roberts M J, Braun N O, Sinclair T R, et al. Comparing and combining process-based crop models and statistical models with some implications for climate change[J]. Environmental Research Letters, 2017, 12(9):095010. doi: 10.1088/1748-9326/aa7f33.
doi: 10.1088/1748-9326/aa7f33 |
[73] |
Lobell D B, Field C B. Global scale climate-crop yield relationships and the impacts of recent warming[J]. Environmental Research Letters, 2007, 2(1):014002. doi: 10.1088/1748-9326/2/1/014002.
doi: 10.1088/1748-9326/2/1/014002 |
[74] |
Yin X G, Olesen J E, Wang M, et al. Climate effects on crop yields in the northeast farming region of China during 1961-2010[J]. The Journal of Agricultural Science, 2016, 154(7):1190-1208.
doi: 10.1017/S0021859616000149 |
[75] |
Tao F, Yokozawa M, Liu J, et al. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends[J]. Climate Research, 2008, 38:83-94.
doi: 10.3354/cr00771 |
[76] |
Huang J K, Wang Y J, Wang J X. Farmers' adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China[J]. American Journal of Agricultural Economics, 2015, 97(2):602-617.
doi: 10.1093/ajae/aav005 |
[77] |
Ciscar J C, Fisher-Vanden K, Lobell D B. Synjournal and review: An inter-method comparison of climate change impacts on agriculture[J]. Environmental Research Letters, 2018, 13(7):070401. doi: 10.1088/1748-9326/aac7cb.
doi: 10.1088/1748-9326/aac7cb |
[78] |
Lobell D B, Asseng S. Comparing estimates of climate change impacts from process-based and statistical crop models[J]. Environmental Research Letters, 2017, 12(1):015001. doi: 10.1088/1748-9326/aa518a.
doi: 10.1088/1748-9326/aa518a |
[79] |
Shi W J, Tao F L, Zhang Z. A review on statistical models for identifying climate contributions to crop yields[J]. Journal of Geographical Sciences, 2013, 23(3):567-576.
doi: 10.1007/s11442-013-1029-3 |
[70] | 尹朝静. 气候变化对中国水稻生产的影响研究[D]. 武汉: 华中农业大学, 2017. |
[ Yin Chaojing. Study on the climate change impact on Chinese rice production. Wuhan, China: Huazhong Agricultural University, 2017. ] | |
[81] | 王旭辉. 中国水稻生态系统对环境变化的响应[D]. 北京: 北京大学, 2015. |
[ Wang Xuhui. Response of rice ecosystems to environmental change in China. Beijing, China: Peking University, 2015. ] | |
[82] |
Zhang J T, Feng L P, Zou H P, et al. Using ORYZA2000 to model cold rice yield response to climate change in the Heilongjiang Province, China[J]. The Crop Journal, 2015, 3(4):317-327.
doi: 10.1016/j.cj.2014.09.005 |
[83] | Basak J K, Ali M A, Islam N. Assessment of the effect of climate change on boro rice production in Bangladesh using DSSAT model[J]. Journal of Civil Engineering (IEB), 2010, 38(2):95-108. |
[84] |
Bondeau A, Smith P C, Zaehle S, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance[J]. Global Change Biology, 2007, 13(3):679-706.
doi: 10.1111/gcb.2007.13.issue-3 |
[85] |
Folberth C, Skalský R, Moltchanova E, et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations[J]. Nature Communications, 2016, 7:11872. doi: 10.1038/ncomms11872.
doi: 10.1038/ncomms11872 |
[86] | 唐利群. 中国水稻种植户极端气候适应性行为及效应研究[D]. 杭州: 浙江大学, 2018. |
[ Tang Liqun. Study on Chinese rice farmers' adaptation behaviors and effectivenesses to climate extremes. Hangzhou, China: Zhejiang University, 2018. ] | |
[87] |
van der Velde M, Tubiello F N, Vrieling A, et al. Impacts of extreme weather on wheat and maize in France: Evaluating regional crop simulations against observed data[J]. Climatic Change, 2012, 113(3/4):751-765.
doi: 10.1007/s10584-011-0368-2 |
[88] |
Müller C, Elliott J, Chryssanthacopoulos J, et al. Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications[J]. Geoscientific Model Development, 2017, 10(4):1403-1422.
doi: 10.5194/gmd-10-1403-2017 |
[89] |
Gregory P J, Marshall B. Attribution of climate change: A methodology to estimate the potential contribution to increases in potato yield in Scotland since 1960[J]. Global Change Biology, 2012, 18(4):1372-1388.
doi: 10.1111/j.1365-2486.2011.02601.x |
[90] |
Yu Q, Li L H, Luo Q Y, et al. Year patterns of climate impact on wheat yields[J]. International Journal of Climatology, 2014, 34(2):518-528.
doi: 10.1002/joc.3704 |
[91] |
Schillinger W F. Rainfall impacts winter wheat seedling emergence from deep planting depths[J]. Agronomy Journal, 2011, 103(3):730-734.
doi: 10.2134/agronj2010.0442 |
[92] |
Gellesch E, Khan M A S A, Jentsch A, et al. Grassland experiments under climatic extremes: Reproductive fitness versus biomass[J]. Environmental and Experimental Botany, 2017, 144:68-75.
doi: 10.1016/j.envexpbot.2017.10.007 |
[93] |
Knapp A K, Carroll C J W, Griffin-Nolan R J, et al. A reality check for climate change experiments: Do they reflect the real world?[J]. Ecology, 2018, 99(10):2145-2151.
doi: 10.1002/ecy.2474 pmid: 30054917 |
[94] | 朱晓莉, 王筠菲, 周宏. 气候变化对江苏省水稻产量的贡献率分析[J]. 农业技术经济, 2013(4):53-58. |
[ Zhu Xiaoli, Wang Yunfei, Zhou Hong. Analysis on the contribution rate of climate change to rice yield in Jiangsu Province. Journal of Agrotechnical Economics, 2013(4):53-58. ] | |
[95] | 朱红根. 气候变化对中国南方水稻影响的经济分析及其适应策略[D]. 南京: 南京农业大学, 2010. |
[ Zhu Honggen. The economic analysis of climate change impact on rice in Southern China and its adaptive strategies. Nanjing, China: Nanjing Agricultural University, 2010. ] | |
[96] | 韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响[J]. 生态与农村环境学报, 2019, 35(3):283-289. |
[ Han Fangyu, Zhang Junbiao, Cheng Linlin, et al. Impact of climate change on rice yield and its regional heterogeneity in China. Journal of Ecology and Rural Environment, 2019, 35(3):283-289. ] | |
[97] | 张卫建, 陈长青, 江瑜, 等. 气候变暖对我国水稻生产的综合影响及其应对策略[J]. 农业环境科学学报, 2020, 39(4):805-811. |
[ Zhang Weijian, Chen Changqing, Jiang Yu, et al. Comprehensive influence of climate warming on rice production and countermeasure for food security in China. Journal of Agro-Environment Science, 2020, 39(4):805-811. ] | |
[98] |
Feng P Y, Wang B, Liu D L, et al. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia[J]. Climatic Change, 2018, 147(3/4):555-569.
doi: 10.1007/s10584-018-2170-x |
[99] |
Calvin K, Fisher-Vanden K. Quantifying the indirect impacts of climate on agriculture: An inter-method comparison[J]. Environmental Research Letters, 2017, 12(11):115004. doi: 10.1088/1748-9326/aa843c.
doi: 10.1088/1748-9326/aa843c |
[100] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学: 地球科学, 2019, 49(9):1321-1334. |
[ Piao Shilong, Zhang Xinping, Chen Anping, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review. Scientia Sinica Terrae, 2019, 49(9):1321-1334. ] | |
[101] |
Zhuang Y H, Zhang L, Li S S, et al. Effects and potential of water-saving irrigation for rice production in China[J]. Agricultural Water Management, 2019, 217:374-382.
doi: 10.1016/j.agwat.2019.03.010 |
[102] |
Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575:109-118.
doi: 10.1038/s41586-019-1679-0 |
[1] | LI Shuangshuang, ZHANG Yufeng, WANG Chengbo, WANG Ting, YAN Junping. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 1026-1036. |
[2] | WEN Zhihong, DENG Guorong, ZHAO Jianjun, ZHANG Hongyan, GUO Xiaoyi. Response of velocity of vegetation greenup to frost in the Greater Khingan Mountains [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 839-847. |
[3] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[4] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[5] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[6] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[7] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[8] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[9] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[10] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[11] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[12] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[13] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[14] | Lingbo XIAO. Spatiotemporal distribution of high flood risk areas in China, 1736-1911 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 495-503. |
[15] | Bojie FU. Thoughts on the recent development of physical geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 1-7. |
|