PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (10): 1716-1729.doi: 10.18306/dlkxjz.2021.10.009
• Articles • Previous Articles Next Articles
LONG Dongping(), YUE Han, CHEN Jianguo*(
)
Received:
2021-01-04
Revised:
2021-03-02
Online:
2021-10-28
Published:
2021-12-28
Contact:
CHEN Jianguo
E-mail:longdp@gzhu.edu.cn;chenjg@gzhu.edu.cn
Supported by:
LONG Dongping, YUE Han, CHEN Jianguo. Study on the impact of ambient population and surveillance cameras on street robbers’ crime location choice considering time effect[J].PROGRESS IN GEOGRAPHY, 2021, 40(10): 1716-1729.
Tab.1
Descriptive statistics of variables (N=1971)
变量 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|
自变量 | ||||
人群日常流动密度 /(万人/km2) | 1.14 | 2.20 | 0 | 26.36 |
社会治安视频监控/个 | 5.50 | 13.41 | 0 | 364 |
控制变量 | ||||
公交站/个 | 2.91 | 4.41 | 0 | 96 |
客运站/个 | 0.06 | 0.37 | 0 | 4 |
地铁站/个 | 0.31 | 1.20 | 0 | 14 |
酒吧与会所/个 | 1.37 | 2.34 | 0 | 21 |
网吧/个 | 0.43 | 0.96 | 0 | 11 |
体育场馆/个 | 0.94 | 2.40 | 0 | 47 |
中学/个 | 0.46 | 0.96 | 0 | 7 |
银行与ATM/个 | 3.92 | 5.55 | 0 | 71 |
停车场/个 | 5.81 | 7.53 | 0 | 69 |
商场与超市/个 | 3.26 | 5.47 | 0 | 59 |
杂货店/个 | 2.28 | 3.14 | 0 | 31 |
批发市场/个 | 1.53 | 2.56 | 0 | 24 |
道路网络密度/(km/km2) | 10.82 | 7.86 | 1.01 | 54.07 |
外来人口比重/% | 47 | 25 | 0 | 100 |
青少年人口比重/% | 26 | 11 | 0 | 90 |
社会经济异质性/% | 47.4 | 24.0 | 0 | 85.2 |
Tab.2
Results of the discrete spatial choice modeling
变量 | 模型1 | 模型2 | 模型3 | 模型4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | Z | OR | Z | OR | Z | OR | Z | ||||
公交站 | 1.019*** | 23.99 | 1.019*** | 24.37 | 1.019*** | 24.07 | 1.019*** | 24.46 | |||
客运站 | 1.045*** | 4.58 | 1.046** | 4.69 | 1.044*** | 4.47 | 1.045*** | 4.58 | |||
地铁站 | 1.030*** | 7.50 | 1.030*** | 7.41 | 1.030*** | 7.36 | 1.029*** | 7.27 | |||
酒吧与会所 | 1.014*** | 5.64 | 1.014*** | 5.67 | 1.014*** | 5.57 | 1.014*** | 5.60 | |||
网吧 | 1.000 | -0.07 | 0.999 | -0.16 | 0.999 | -0.15 | 0.999 | -0.24 | |||
体育场馆 | 0.975*** | -9.72 | 0.976*** | -9.43 | 0.977*** | -9.00 | 0.977*** | -8.70 | |||
中学 | 1.035*** | 6.55 | 1.035*** | 6.49 | 1.037*** | 6.73 | 1.036*** | 6.67 | |||
银行与ATM | 0.989*** | -8.95 | 0.989*** | -9.08 | 0.989*** | -9.17 | 0.989*** | -9.31 | |||
停车场 | 1.014*** | 14.40 | 1.013*** | 13.80 | 1.014*** | 14.56 | 1.013*** | 13.97 | |||
商场与超市 | 1.044*** | 66.65 | 1.044*** | 66.80 | 1.044*** | 66.66 | 1.044*** | 66.82 | |||
杂货店 | 1.029*** | 15.51 | 1.029*** | 15.61 | 1.028*** | 15.47 | 1.029*** | 15.57 | |||
批发市场 | 1.030*** | 15.62 | 1.029*** | 15.51 | 1.030*** | 15.68 | 1.030*** | 15.57 | |||
道路网络密度 | 0.959*** | -31.65 | 0.966*** | -22.27 | 0.959*** | -31.74 | 0.965*** | -22.36 | |||
外来人口比重 | 3.286*** | 35.91 | 3.353*** | 36.32 | 3.289*** | 35.93 | 3.357*** | 36.34 | |||
青少年人口比重 | 1.826*** | 9.55 | 1.799*** | 9.31 | 1.848*** | 9.71 | 1.820*** | 9.48 | |||
社会经济异质性 | 1.035*** | 11.08 | 1.035*** | 11.14 | 1.036*** | 11.28 | 1.036*** | 11.34 | |||
人群日常流动密度 | — | — | 0.957*** | -6.86 | — | — | 0.957*** | -6.88 | |||
社会治安视频监控 | — | — | — | — | 0.999* | -2.48 | 0.999* | -2.55 | |||
伪R2 | 0.207 | 0.228 | 0.227 | 0.230 |
Tab.3
Results of time effect of ambient population and surveillance cameras
不同时段 | 人群日常流动密度 | 社会治安视频监控 | |||||
---|---|---|---|---|---|---|---|
-2 SE | OR | +2 SE | -2 SE | OR | +2 SE | ||
日内时尺度 | |||||||
6:00~8:00 | 0.150 | 0.358** | 0.852 | 0.994 | 0.998 | 1.002 | |
8:00~10:00 | 0.216 | 0.395** | 0.722 | 0.994 | 0.997 | 1.001 | |
10:00~12:00 | 0.634 | 0.889 | 1.246 | 0.996 | 0.999 | 1.002 | |
12:00~14:00 | 0.471 | 0.735 | 1.147 | 0.993 | 0.996* | 0.999 | |
14:00~16:00 | 0.335 | 0.548* | 0.897 | 1.000 | 1.002 | 1.005 | |
16:00~18:00 | 0.497 | 0.731 | 1.074 | 0.997 | 1.000 | 1.002 | |
18:00~20:00 | 0.331 | 0.478** | 0.691 | 0.999 | 1.001 | 1.003 | |
20:00~22:00 | 0.331 | 0.479*** | 0.694 | 0.998 | 1.000 | 1.001 | |
22:00~0:00 | 0.285 | 0.455** | 0.728 | 0.997 | 0.999 | 1.001 | |
0:00~2:00 | 0.306 | 0.596 | 1.159 | 0.995 | 0.997* | 1.000 | |
2:00~4:00 | 0.054 | 0.148*** | 0.405 | 0.997 | 1.000 | 1.002 | |
4:00~6:00 | 0.018 | 0.064*** | 0.231 | 0.993 | 0.997 | 1.000 | |
周内日尺度 | |||||||
星期一 | 0.888 | 0.920*** | 0.954 | 0.999 | 1.000 | 1.002 | |
星期二 | 0.903 | 0.935*** | 0.968 | 0.998 | 1.000 | 1.002 | |
星期三 | 0.935 | 0.964* | 0.994 | 0.997 | 0.999 | 1.000 | |
星期四 | 0.909 | 0.941** | 0.975 | 0.997 | 0.999 | 1.001 | |
星期五 | 0.885 | 0.919*** | 0.953 | 0.997 | 0.999 | 1.000 | |
星期六 | 0.918 | 0.948** | 0.980 | 0.997 | 0.999 | 1.001 | |
星期日 | 0.920 | 0.950** | 0.980 | 0.997 | 0.999 | 1.001 |
[1] |
Bernasco W, Block R, Ruiter S. Go where the money is: Modeling street robbers' location choices[J]. Journal of Economic Geography, 2013, 13(1):119-143.
doi: 10.1093/jeg/lbs005 |
[2] |
Angel C M, Sherman L W, Strang H, et al. Short-term effects of restorative justice conferences on post-traumatic stress symptoms among robbery and burglary victims: A randomized controlled trial[J]. Journal of Experimental Criminology, 2014, 10(3):291-307.
doi: 10.1007/s11292-014-9200-0 |
[3] |
Gale J A, Coupe T. The behavioural, emotional and psychological effects of street robbery on victims[J]. International Review of Victimology, 2005, 12(1):1-22.
doi: 10.1177/026975800501200101 |
[4] | Cook P J. Robbery[M]// Tonry M. The Oxford handbook of crime and public policy. Oxford, UK: Oxford University Press, 2009: 102-114. |
[5] |
Gialopsos B M, Carter J W II. Offender searches and crime events[J]. Journal of Contemporary Criminal Justice, 2015, 31(1):53-70.
doi: 10.1177/1043986214552608 |
[6] | Cohen L E, Cantor D, Kluege J R. Robbery victimization in the United States: An analysis of a nonrandom event[J]. Social Science Quarterly, 1981, 62(4):644-657. |
[7] | Silberman C E. Criminal violence, criminal justice[M]. New York, USA: Random House, 1978. |
[8] | Conklin J E. Robbery and the criminal justice system[M]. Philadelphia, USA: Lippincott, 1972. |
[9] |
Townsley M, Birks D, Bernasco W, et al. Burglar target selection: A cross-national comparison[J]. The Journal of Research in Crime and Delinquency, 2015, 52(1):3-31.
doi: 10.1177/0022427814541447 |
[10] |
龙冬平, 柳林, 陈建国, 等. 街头抢劫者前犯罪经历对其后作案地选择的影响[J]. 地理科学进展, 2020, 39(5):815-828.
doi: 10.18306/dlkxjz.2020.05.010 |
[ Long Dongping, Liu Lin, Chen Jianguo, et al. Impact of prior crime experiences of street robbers on subsequent crime location choices. Progress in Geography, 2020, 39(5):815-828. ] | |
[11] | 龙冬平. 街头抢劫者作案地选择的时空特征与形成机理[D]. 广州: 中山大学, 2018. |
[ Long Dongping. Research on the spatio-temporal characteristic and formation mechanism of crime location choice of street robbers. Guangzhou, China: Sun Yat-sen University, 2018. ] | |
[12] |
龙冬平, 柳林, 冯嘉欣, 等. 社区环境对入室盗窃和室外盗窃影响的对比分析: 以ZG市ZH半岛为例[J]. 地理学报, 2017, 72(2):341-355.
doi: 10.11821/dlxb201702013 |
[ Long Dongping, Liu Lin, Feng Jiaxin, et al. Comparisons of the community environment effects on burglary and outdoor-theft: A case study of ZH peninsula in ZG City. Acta Geographica Sinica, 2017, 72(2):341-355. ] | |
[13] |
张延吉, 秦波, 朱春武. 北京城市建成环境对犯罪行为和居住安全感的影响[J]. 地理学报, 2019, 74(2):238-252.
doi: 10.11821/dlxb201902003 |
[ Zhang Yanji, Qin Bo, Zhu Chunwu. The impact of urban built environment on criminal behavior and residential security in Beijing. Acta Geographica Sinica, 2019, 74(2):238-252. ] | |
[14] |
Bernasco W, Ruiter S, Block R. Do street robbery location choices vary over time of day or day of week? A test in Chicago[J]. The Journal of Research in Crime and Delinquency, 2017, 54(2):244-275.
doi: 10.1177/0022427816680681 |
[15] | Johnson S D, Summers L. Testing ecological theories of offender spatial decision making using a discrete choice model[J]. Crime & Delinquency, 2015, 61(3):454-480. |
[16] |
Townsley M, Birks D, Ruiter S, et al. Target selection models with preference variation between offenders[J]. Journal of Quantitative Criminology, 2016, 32(2):283-304.
doi: 10.1007/s10940-015-9264-7 |
[17] |
郑文升, 卓蓉蓉, 罗静, 等. 基于空间句法的武汉城区“两抢一盗”犯罪分布环境[J]. 地理学报, 2016, 71(10):1710-1720.
doi: 10.11821/dlxb201610004 |
[ Zheng Wensheng, Zhuo Rongrong, Luo Jing, et al. The distribution environment of robbery, snatch and theft crime based on space syntax: A case study of the central area of Wuhan. Acta Geographica Sinica, 2016, 71(10):1710-1720. ] | |
[18] |
龙冬平, 柳林, 周素红, 等. 地理学视角下犯罪者行为研究进展[J]. 地理科学进展, 2017, 36(7):886-902.
doi: 10.18306/dlkxjz.2017.07.010 |
[ Long Dongping, Liu Lin, Zhou Suhong, et al. Research progress of criminal behavior from the perspective of geography. Progress in Geography, 2017, 36(7):886-902. ] | |
[19] |
严小兵. 中国省域犯罪率影响因素的空间非平稳性分析[J]. 地理科学进展, 2013, 32(7):1159-1166.
doi: 10.11820/dlkxjz.2013.07.018 |
[ Yan Xiaobing. Spatial non-stationarity of the factors affecting crime rate at province scale in China. Progress in Geography, 2013, 32(7):1159-1166. ] | |
[20] |
Cohen L E, Felson M. Social change and crime rate trends: A routine activity approach[J]. American Sociological Review, 1979, 44(4):588-608.
doi: 10.2307/2094589 |
[21] |
Brantingham P, Brantingham P. Criminality of place: Crime generators and crime attractors[J]. European Journal on Criminal Policy and Research, 1995, 3(3):5-26.
doi: 10.1007/BF02243080 |
[22] | Brantingham P J, Brantingham P L. Environmental criminology[M]. Beverly Hills, USA: Sage Publications, 1981: 27-54. |
[23] |
Feng J X, Liu L, Long D P, et al. An examination of spatial differences between migrant and native offenders in committing violent crimes in a large Chinese city[J]. ISPRS International Journal of Geo-Information, 2019, 8(3):119. doi: 10.3390/ijgi8030119.
doi: 10.3390/ijgi8030119 |
[24] |
Mburu L W, Helbich M. Crime risk estimation with a commuter-harmonized ambient population[J]. Annals of the American Association of Geographers, 2016, 106(4):804-818.
doi: 10.1080/24694452.2016.1163252 |
[25] |
He L, Páez A, Jiao J M, et al. Ambient population and larceny-theft: A spatial analysis using mobile phone data[J]. ISPRS International Journal of Geo-Information, 2020, 9(6):342. doi: 10.3390/ijgi9060342.
doi: 10.3390/ijgi9060342 |
[26] |
Andresen M A. The ambient population and crime analysis[J]. The Professional Geographer, 2011, 63(2):193-212.
doi: 10.1080/00330124.2010.547151 |
[27] |
Hanaoka K. New insights on relationships between street crimes and ambient population: Use of hourly population data estimated from mobile phone users' locations[J]. Environment and Planning B: Urban Analytics and City Science, 2018, 45(2):295-311.
doi: 10.1177/0265813516672454 |
[28] |
Hipp J R, Bates C, Lichman M, et al. Using social media to measure temporal ambient population: Does it help explain local crime rates?[J]. Justice Quarterly, 2019, 36(4):718-748.
doi: 10.1080/07418825.2018.1445276 |
[29] |
Song G W, Bernasco W, Liu L, et al. Crime feeds on legal activities: Daily mobility flows help to explain thieves' target location choices[J]. Journal of Quantitative Criminology, 2019, 35:831-854.
doi: 10.1007/s10940-019-09406-z |
[30] |
Song G W, Liu L, Bernasco W, et al. Testing indicators of risk populations for theft from the person across space and time: The significance of mobility and outdoor activity[J]. Annals of the American Association of Geographers, 2018, 108(5):1370-1388.
doi: 10.1080/24694452.2017.1414580 |
[31] |
Panigutti C, Tizzoni M, Bajardi P, et al. Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models[J]. Royal Society Open Science, 2017, 4(5):160950. doi: 10.1098/rsos.160950.
doi: 10.1098/rsos.160950 pmid: 28572990 |
[32] |
Vespignani A. Predicting the behavior of techno-social systems[J]. Science, 2009, 325:425-428.
doi: 10.1126/science.1171990 |
[33] |
Andresen M A, Jenion G W. Ambient populations and the calculation of crime rates and risk[J]. Security Journal, 2010, 23(2):114-133.
doi: 10.1057/sj.2008.1 |
[34] |
Boivin R. Routine activity, population(s) and crime: Spatial heterogeneity and conflicting propositions about the neighborhood crime-population link[J]. Applied Geography, 2018, 95:79-87.
doi: 10.1016/j.apgeog.2018.04.016 |
[35] | Felson M, Eckert M. Crime and everyday life[M]. 5th Edition. Thousand Oaks, USA: Sage Publications, 2015. |
[36] |
Reid A A, Andresen M A. An evaluation of CCTV in a car park using police and insurance data[J]. Security Journal, 2014, 27(1):55-79.
doi: 10.1057/sj.2012.14 |
[37] |
Ratcliffe J H, Taniguchi T, Taylor R B. The crime reduction effects of public CCTV cameras: A multi-method spatial approach[J]. Justice Quarterly, 2009, 26(4):746-770.
doi: 10.1080/07418820902873852 |
[38] |
Lim H, Wilcox P. Crime-reduction effects of open-street CCTV: Conditionality considerations[J]. Justice Quarterly, 2017, 34(4):597-626.
doi: 10.1080/07418825.2016.1194449 |
[39] |
柳林, 姜超, 李璐. 警用视频监控的犯罪防控效果及空间差异: 以苏州市姑苏区为例[J]. 地理科学, 2019, 39(1):61-69.
doi: 10.13249/j.cnki.sgs.2019.01.007 |
[ Liu Lin, Jiang Chao, Li Lu. The effects of police CCTV camera on crime: A case study from Gusu District in Suzhou, China. Scientia Geographica Sinica, 2019, 39(1):61-69. ] | |
[40] | Clarke R V G. Situational crime prevention[M]. Monsey, USA: Criminal Justice Press, 1997. |
[41] |
Farrington D P, Gill M, Waples S J, et al. The effects of closed-circuit television on crime: Meta-analysis of an English national quasi-experimental multi-site evaluation[J]. Journal of Experimental Criminology, 2007, 3(1):21-38.
doi: 10.1007/s11292-007-9024-2 |
[42] |
Ratcliffe J H, Groff E R. A longitudinal quasi-experimental study of violence and disorder impacts of urban CCTV camera clusters[J]. Criminal Justice Review, 2019, 44(2):148-164.
doi: 10.1177/0734016818811917 |
[43] |
肖露子, 柳林, 宋广文, 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017, 36(12):2479-2491.
doi: 10.11821/dlyj201712017 |
[ Xiao Luzi, Liu Lin, Song Guangwen, et al. Impacts of community environment on residential burglary based on rational choice theory. Geographical Research, 2017, 36(12):2479-2491. ] | |
[44] |
Law J, Quick M, Chan P. Open area and road density as land use indicators of young offender residential locations at the small-area level: A case study in Ontario, Canada[J]. Urban Studies, 2016, 53(8):1710-1726.
doi: 10.1177/0042098015576316 |
[45] |
Bernasco W, Block R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points[J]. Journal of Research in Crime and Delinquency, 2011, 48(1):33-57.
doi: 10.1177/0022427810384135 |
[46] |
Kinney J B, Brantingham P L, Wuschke K, et al. Crime attractors, generators and detractors: Land use and urban crime opportunities[J]. Built Environment, 2008, 34(1):62-74.
doi: 10.2148/benv.34.1.62 |
[47] |
Haberman C P, Ratcliffe J H. Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts[J]. Criminology, 2015, 53(3):457-483.
doi: 10.1111/crim.2015.53.issue-3 |
[48] |
Kurland J, Johnson S D, Tilley N. Offenses around stadiums: A natural experiment on crime attraction and generation[J]. Journal of Research in Crime and Delinquency, 2014, 51(1):5-28.
doi: 10.1177/0022427812471349 |
[49] |
Bursik R J Jr. Social disorganization and theories of crime and delinquency: Problems and prospects[J]. Criminology, 1988, 26(4):519-552.
doi: 10.1111/crim.1988.26.issue-4 |
[50] | Shaw C R, McKay H D. Juvenile delinquency and urban areas[M]. Chicago, USA: University of Chicago Press, 1942. |
[51] |
Sampson R J, Raudenbush S W, Earls F. Neighborhoods and violent crime: A multilevel study of collective efficacy[J]. Science, 1997, 277:918-924.
pmid: 9252316 |
[52] |
Galster G, Santiago A. Neighbourhood ethnic composition and outcomes for low-income Latino and African American children[J]. Urban Studies, 2017, 54(2):482-500.
doi: 10.1177/0042098015598067 |
[53] |
Braga A A, Clarke R V. Explaining high-risk concentrations of crime in the city: Social disorganization, crime opportunities, and important next steps[J]. Journal of Research in Crime and Delinquency, 2014, 51(4):480-498.
doi: 10.1177/0022427814521217 |
[54] |
Weisburd D, Groff E R, Yang S M. Understanding and controlling hot spots of crime: The importance of formal and informal social controls[J]. Prevention Science, 2014, 15(1):31-43.
doi: 10.1007/s11121-012-0351-9 pmid: 23435556 |
[55] |
柳林, 张春霞, 冯嘉欣, 等. ZG市诈骗犯罪的时空分布与影响因素[J]. 地理学报, 2017, 72(2):315-328.
doi: 10.11821/dlxb201702011 |
[ Liu Lin, Zhang Chunxia, Feng Jiaxin, et al. The spatial-temporal distribution and influencing factors of fraud crime in ZG City, China. Acta Geographica Sinica, 2017, 72(2):315-328. ] | |
[56] |
Browning C R, Byron R A, Calder C A, et al. Commercial density, residential concentration, and crime: Land use patterns and violence in neighborhood context[J]. Journal of Research in Crime and Delinquency, 2010, 47(3):329-357.
doi: 10.1177/0022427810365906 |
[57] |
Bernasco W, Nieuwbeerta P. How do residential burglars select target areas? A new approach to the analysis of criminal location choice[J]. The British Journal of Criminology, 2005, 45(3):296-315.
doi: 10.1093/bjc/azh070 |
[58] |
Hart T C, Miethe T D. Configural behavior settings of crime event locations: Toward an alternative conceptualization of criminogenic microenvironments[J]. Journal of Research in Crime and Delinquency, 2015, 52(3):373-402.
doi: 10.1177/0022427814566639 |
[59] | Bogomolov A, Lepri B, Staiano J, et al. Once upon a crime: Towards crime prediction from demographics and mobile data[C]// Proceedings of the 16th international conference on multimodal interaction. Istanbul, Turkey: Association for Computing Machinery, 2014: 427-434. |
[60] | Cornish D B, Clarke R V. Opportunities, precipitators and criminal decisions: A reply to Wortley's critique of situational crime prevention[J]. Crime Prevention Studies, 2003, 16:41-96. |
[61] |
Liu L, Jiang C, Zhou S H, et al. Impact of public bus system on spatial burglary patterns in a Chinese urban context[J]. Applied Geography, 2017, 89:142-149.
doi: 10.1016/j.apgeog.2017.11.002 |
[62] |
Bernasco W, Johnson S D, Ruiter S. Learning where to offend: Effects of past on future burglary locations[J]. Applied Geography, 2015, 60:120-129.
doi: 10.1016/j.apgeog.2015.03.014 |
[63] |
Lammers M, Menting B, Ruiter S, et al. Biting once, twice: The influence of prior on subsequent crime location choice[J]. Criminology, 2015, 53(3):309-329.
doi: 10.1111/crim.2015.53.issue-3 |
[64] |
Long D P, Liu L, Feng J X, et al. Assessing the influence of prior on subsequent street robbery location choices: A case study in ZG City, China[J]. Sustainability, 2018, 10(6):1818. doi: 10.3390/su10061818.
doi: 10.3390/su10061818 |
[65] |
Baudains P, Braithwaite A, Johnson S D. Target choice during extreme events: A discrete spatial choice model of the 2011 London riots[J]. Criminology, 2013, 51(2):251-285.
doi: 10.1111/crim.2013.51.issue-2 |
[66] |
Groff E R, Lockwood B. Criminogenic facilities and crime across street segments in Philadelphia: Uncovering evidence about the spatial extent of facility influence[J]. Journal of Research in Crime and Delinquency, 2014, 51(3):277-314.
doi: 10.1177/0022427813512494 |
[67] |
Wang F H, Hu Y J, Wang S, et al. Local indicator of colocation quotient with a statistical significance test: Examining spatial association of crime and facilities[J]. The Professional Geographer, 2017, 69(1):22-31.
doi: 10.1080/00330124.2016.1157498 |
[68] |
宋广文, 肖露子, 周素红, 等. 居民日常活动对扒窃警情时空格局的影响[J]. 地理学报, 2017, 72(2):356-367.
doi: 10.11821/dlxb201702014 |
[ Song Guangwen, Xiao Luzi, Zhou Suhong, et al. Impact of residents' routine activities on the spatial-temporal pattern of theft from person. Acta Geographica Sinica, 2017, 72(2):356-367. ] | |
[69] |
王洋, 金利霞, 张虹鸥, 等. 社会空间视角下广州居住地犯罪风险的格局与模式[J]. 地理研究, 2017, 36(12):2465-2478.
doi: 10.11821/dlyj201712016 |
[ Wang Yang, Jin Lixia, Zhang Hong'ou, et al. Pattern and model of residential criminal risk based on social space in Guangzhou, China. Geographical Research, 2017, 36(12):2465-2478. ] | |
[70] | Clare J, Fernandez J, Morgan F. Formal evaluation of the impact of barriers and connectors on residential burglars' macro-level offending location choices[J]. Australian & New Zealand Journal of Criminology, 2009, 42(2):139-158. |
[71] | McFadden D. Quantitative methods for analysing travel behaviour of individuals: Some recent developments[M]// Henser D A, Stopher P R. Behavioural travel modelling. London, UK: Croom Helm, 1978: 279-318. |
[72] | Jacobs J. The death and life of great American cities[M]. New York, USA: Random House, 1961. |
[1] | LONG Dongping, LIU Lin, CHEN Jianguo, XIAO Luzi, SONG Guangwen, XU Chong. Impact of prior crime experiences of street robbers on subsequent crime location choices [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 815-828. |
|