PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (10): 1704-1715.doi: 10.18306/dlkxjz.2021.10.008
• Articles • Previous Articles Next Articles
LI Kaizhong1,2(), XU Zhongchun3, LV Xiaoxi1,2, DONG Yingping1,2, WANG Hengsong1,2
Received:
2020-10-13
Revised:
2021-06-22
Online:
2021-10-28
Published:
2021-12-28
Supported by:
LI Kaizhong, XU Zhongchun, LV Xiaoxi, DONG Yingping, WANG Hengsong. Quantifying the effect of drought with different durations on karst dissolution based on field control test[J].PROGRESS IN GEOGRAPHY, 2021, 40(10): 1704-1715.
Tab.1
Impact of different durations of drought on karst dissolution for different land use types
干旱持续时间/月 | 自然溶蚀/(mg/cm2) | 干旱溶蚀/(mg/cm2) | 数量损失/(mg/cm2) | 损失比重/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
林地 | 灌草地 | 耕地 | 林地 | 灌草地 | 耕地 | 林地 | 灌草地 | 耕地 | 林地 | 灌草地 | 耕地 | ||||
1 | 0.1199 | 0.1649 | 0.3436 | 0.0772 | 0.1015 | 0.1142 | 0.0427 | 0.0634 | 0.2294 | 35.61 | 38.45 | 66.76 | |||
2 | 0.2052 | 0.3782 | 0.5903 | 0.1279 | 0.1464 | 0.1372 | 0.0773 | 0.2318 | 0.4531 | 37.67 | 61.29 | 76.76 | |||
3 | 0.2410 | 0.3413 | 0.7022 | 0.1499 | 0.0830 | 0.1303 | 0.0911 | 0.2583 | 0.5719 | 37.80 | 75.68 | 81.44 | |||
4 | 0.2410 | 0.3874 | 0.8509 | 0.1269 | 0.0599 | 0.1199 | 0.1141 | 0.3275 | 0.7310 | 47.34 | 84.54 | 85.91 | |||
5 | 0.2525 | 0.4600 | 1.0769 | 0.1752 | 0.1049 | 0.1015 | 0.0773 | 0.3551 | 0.9754 | 30.61 | 77.20 | 90.57 | |||
6 | 0.4451 | 0.5096 | 1.5416 | 0.1442 | 0.1718 | 0.1269 | 0.3009 | 0.3378 | 1.4147 | 67.60 | 66.29 | 91.77 | |||
7 | 0.5327 | 0.5534 | 1.9912 | 0.0888 | 0.1199 | 0.0968 | 0.4439 | 0.4335 | 1.8944 | 83.33 | 78.33 | 95.14 | |||
8 | 0.6053 | 0.6042 | 2.2357 | 0.1072 | 0.1292 | 0.1361 | 0.4981 | 0.4750 | 2.0996 | 82.29 | 78.62 | 93.91 | |||
9 | 0.7541 | 0.6192 | 2.5251 | 0.1638 | 0.0692 | 0.1269 | 0.5903 | 0.5500 | 2.3982 | 78.28 | 88.82 | 94.97 | |||
10 | 0.8694 | 0.8417 | 3.1154 | 0.1591 | 0.1245 | 0.1995 | 0.7103 | 0.7172 | 2.9159 | 81.70 | 85.21 | 93.60 | |||
11 | 0.9351 | 1.1657 | 3.4671 | 0.1868 | 0.1418 | 0.1937 | 0.7483 | 1.0239 | 3.2734 | 80.02 | 87.84 | 94.41 | |||
12 | 0.9639 | 1.2475 | 3.9202 | 0.2271 | 0.1441 | 0.2156 | 0.7368 | 1.1034 | 3.7046 | 76.44 | 88.45 | 94.50 |
Tab.2
Impact of different durations of drought on karst dissolution loss in different soil layers (mg/cm2)
干旱持续时间/月 | 林地溶蚀损失 | 灌草地溶蚀损失 | 耕地溶蚀损失 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-5 cm | -25 cm | -45 cm | -5 cm | -25 cm | -45 cm | -5 cm | -25 cm | -45 cm | |||
1 | 0.0069 | 0.0553 | 0.0657 | 0.0450 | 0.0657 | 0.0796 | 0.2836 | 0.1937 | 0.2110 | ||
2 | 0.0173 | 0.0761 | 0.1384 | 0.1937 | 0.2110 | 0.2906 | 0.4358 | 0.4012 | 0.5223 | ||
3 | 0.0450 | 0.1280 | 0.1003 | 0.2767 | 0.2145 | 0.2836 | 0.5327 | 0.6607 | 0.5223 | ||
4 | 0.0380 | 0.0934 | 0.2110 | 0.3079 | 0.3597 | 0.3148 | 0.6468 | 0.6849 | 0.8613 | ||
5 | 0.0519 | 0.0208 | 0.1591 | 0.2283 | 0.4116 | 0.4255 | 0.8751 | 0.9651 | 1.0861 | ||
6 | 0.1557 | 0.3874 | 0.3597 | 0.3874 | 0.2940 | 0.3321 | 1.4459 | 1.3559 | 1.4424 | ||
7 | 0.4531 | 0.3736 | 0.5050 | 0.4566 | 0.3563 | 0.4877 | 1.5808 | 1.9094 | 2.1930 | ||
8 | 0.3978 | 0.5361 | 0.5604 | 0.5119 | 0.3978 | 0.5154 | 1.8333 | 2.0927 | 2.3729 | ||
9 | 0.5119 | 0.5569 | 0.7022 | 0.6399 | 0.4635 | 0.5465 | 1.8298 | 2.0927 | 3.2722 | ||
10 | 0.6883 | 0.7437 | 0.6987 | 0.7817 | 0.6607 | 0.7091 | 2.4697 | 2.4732 | 3.8049 | ||
11 | 0.7299 | 0.5431 | 0.9720 | 1.3974 | 0.8648 | 0.8094 | 3.2722 | 2.8191 | 3.7288 | ||
12 | 0.7091 | 0.4946 | 1.0066 | 1.3801 | 1.1207 | 0.8094 | 3.7738 | 3.0854 | 4.2546 |
Tab.3
Loss percentage of karst dissolution caused by different durations of drought in different soil layers (%)
干旱持续时间/月 | 林地溶蚀损失 | 灌草地溶蚀损失 | 耕地溶蚀损失 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-5 cm | -25 cm | -45 cm | -5 cm | -25 cm | -45 cm | -5 cm | -25 cm | -45 cm | |||
1 | 9.09 | 42.11 | 43.18 | 28.89 | 45.24 | 41.07 | 66.13 | 65.12 | 69.32 | ||
2 | 9.62 | 44.00 | 52.63 | 56.00 | 56.48 | 70.00 | 72.83 | 77.85 | 79.47 | ||
3 | 29.55 | 44.05 | 35.80 | 78.43 | 66.67 | 81.19 | 79.79 | 84.51 | 79.47 | ||
4 | 21.15 | 39.71 | 68.54 | 84.76 | 83.87 | 85.05 | 84.62 | 85.34 | 87.37 | ||
5 | 23.08 | 10.34 | 47.92 | 68.04 | 83.22 | 77.36 | 91.01 | 90.58 | 90.23 | ||
6 | 55.56 | 74.67 | 67.10 | 70.44 | 63.91 | 64.00 | 94.78 | 90.95 | 89.68 | ||
7 | 82.91 | 75.00 | 91.25 | 81.48 | 70.07 | 82.46 | 96.82 | 95.83 | 93.37 | ||
8 | 82.14 | 89.08 | 76.78 | 87.57 | 70.55 | 77.60 | 96.54 | 93.36 | 92.45 | ||
9 | 81.32 | 72.85 | 80.88 | 96.35 | 84.81 | 84.49 | 96.01 | 94.53 | 94.69 | ||
10 | 84.68 | 80.52 | 80.16 | 85.61 | 84.89 | 85.06 | 95.58 | 93.96 | 92.13 | ||
11 | 80.84 | 73.02 | 83.88 | 91.40 | 86.81 | 83.27 | 95.75 | 94.77 | 93.01 | ||
12 | 77.65 | 66.51 | 81.51 | 92.15 | 88.77 | 82.39 | 96.04 | 94.49 | 93.18 |
Tab.4
Correlation between karst dissolution loss and main soil environmental factors for different land use types
土地类型 | 喀斯特溶蚀损失 | 土壤水分 | 土壤pH | |||||
---|---|---|---|---|---|---|---|---|
土壤水分 | 土壤pH | 土壤有机质 | 土壤pH | 土壤有机质 | 土壤有机质 | |||
林地 | -0.628* | 0.413 | -0.513 | -0.570* | 0.307 | -0.330 | ||
灌草地 | -0.455 | 0.467 | -0.627* | -0.573* | -0.038 | -0.055 | ||
耕地 | -0.605* | 0.699** | -0.781** | -0.907** | 0.769** | -0.805** |
[1] | 任美锷, 刘振中. 岩溶学概论[M]. 北京: 商务印书馆, 1983. |
[ Ren Mei'e, Liu Zhenzhong. Introduction to karst. Beijing, China: The Commercial Press, 1983. ] | |
[2] | Ford D, Williams P. Karst hydrogeology and geomorphology[M]. Chichester, UK: John Wiley & Sons, 2007. |
[3] | 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016. |
[ Yuan Daoxian, Jiang Yongjun, Shen Licheng, et al. Modern karst. Beijing, China: Science Press, 2016. ] | |
[4] | 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1):1-6. |
[ Yuan Daoxian. Carbon cycle and global karst. Quaternary Sciences, 1993, 13(1):1-6. ] | |
[5] |
Dreybrodt W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution[J]. The Journal of Geology, 1990, 98(5):639-655.
doi: 10.1086/629431 |
[6] |
Goudie A S, Viles H A. Weathering and the global carbon cycle: Geomorphological perspectives[J]. Earth-Science Reviews, 2012, 113(1/2):59-71.
doi: 10.1016/j.earscirev.2012.03.005 |
[7] |
Zeng S B, Liu Z H, Kaufmann G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J]. Nature Communications, 2019, 10:5749. doi: 10.1038/s41467-019-13772-4.
doi: 10.1038/s41467-019-13772-4 |
[8] |
李朝君, 王世杰, 白晓永, 等. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7):1319-1332.
doi: 10.11821/dlxb201907004 |
[ Li Chaojun, Wang Shijie, Bai Xiaoyong, et al. Estimation of carbonate rock weathering-related carbon sink in global major river basins. Acta Geographica Sinica, 2019, 74(7):1319-1332. ] | |
[9] | 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2/3):95-102. |
[ Liu Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks. Chinese Science Bulletin, 2012, 57(2/3):95-102. ] | |
[10] | 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探: 以珠江流域为例[J]. 科学通报, 2011, 56(26):2181-2187. |
[ Cao Jianhua, Yang Hui, Kang Zhiqiang. Preliminary regional estimation of carbon sink flux by carbonate rock corrosion: A case study of the Pearl River Basin. Chinese Science Bulletin, 2011, 56(26):2181-2187. ] | |
[11] |
Day M. Carbonate erosion rates in southwestern Wisconsin[J]. Physical Geography, 1984, 5(2):142-149.
doi: 10.1080/02723646.1984.10642249 |
[12] | 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988. |
[ Yuan Daoxian, Cai Guihong. The science of karst environment. Chongqing, China: Chongqing Publishing Group, 1988. ] | |
[13] |
Krklec K, Domínguez-Villar D, Perica D. Use of rock tablet method to measure rock weathering and landscape denudation[J]. Earth-Science Reviews, 2021, 212:103449. doi: 10.1016/j.earscirev.2020.103449.
doi: 10.1016/j.earscirev.2020.103449 |
[14] |
Plan L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian Alps[J]. Geomorphology, 2005, 68(3/4):201-212.
doi: 10.1016/j.geomorph.2004.11.014 |
[15] | 章程, 谢运球, 吕勇, 等. 不同土地利用方式对岩溶作用的影响: 以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报, 2006, 61(11):1181-1188. |
[ Zhang Cheng, Xie Yunqiu, Lv Yong, et al. Impact of land-use patterns upon Karst processes: Taking Nongla Fengcong depression area in Guangxi as an example. Acta Geographica Sinica, 2006, 61(11):1181-1188. ] | |
[16] | 王冬银, 章程, 谢世友, 等. 亚高山不同植被类型区的雨季岩溶溶蚀速率研究[J]. 地球学报, 2007, 28(5):488-495. |
[ Wang Dongyin, Zhang Cheng, Xie Shiyou, et al. Karst dissolution rates of areas with different vegetation types in the sub-mountain region. Acta Geoscientica Sinica, 2007, 28(5):488-495. ] | |
[17] | 王冬银, 谢世友, 章程. 典型岩溶区不同土地利用方式下雨季、旱季岩溶作用研究[J]. 生态环境学报, 2009, 18(6):2366-2372. |
[ Wang Dongyin, Xie Shiyou, Zhang Cheng. Impact of land-use patterns upon Karst processes in typical karst regions of Jinfo Mountain. Ecology and Environmental Sciences, 2009, 18(6):2366-2372. ] | |
[18] | 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素: 以重庆金佛山为例[J]. 地质论评, 2010, 56(1):136-140. |
[ Zhang Cheng. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors: A case study of Jinfo Mountain, Chongqing. Geological Review, 2010, 56(1):136-140. ] | |
[19] | 李光超, 张春来, 杨慧, 等. 典型岩溶区旱季板栗树下岩溶溶蚀速率的研究[J]. 地球与环境, 2012, 40(4):512-516. |
[ Li Guangchao, Zhang Chunlai, Yang Hui, et al. Study on karst processes under Castanea mollissima trees at dry season in typical karst areas. Earth and Environment, 2012, 40(4):512-516. ] | |
[20] | 刘文, 张强, 贾亚男. 夏季不同土地利用方式下的溶蚀作用研究: 以重庆青木关岩溶槽谷区为例[J]. 中国岩溶, 2012, 31(1):1-6. |
[ Liu Wen, Zhang Qiang, Jia Yanan. Karstification under different land-use patterns in summer: A case study in the Qingmuguan karst valley, Chongqing. Carsologica Sinica, 2012, 31(1):1-6. ] | |
[21] |
Qiu J. China drought highlights future climate threats[J]. Nature, 2010, 465:142-143.
doi: 10.1038/465142a |
[22] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1):52-58.
doi: 10.1038/nclimate1633 |
[23] |
Naumann G, Alfieri L, Wyser K, et al. Global changes in drought conditions under different levels of warming[J]. Geophysical Research Letters, 2018, 45(7):3285-3296.
doi: 10.1002/grl.v45.7 |
[24] |
Gabrovšek F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas[J]. Geomorphology, 2009, 106(1/2):9-14.
doi: 10.1016/j.geomorph.2008.09.008 |
[25] | 刘再华. 岩溶作用及其碳汇强度计算的“入渗-平衡化学法”: 兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4):379-382. |
[ Liu Zaihua. "Method of maximum potential dissolution" to calculate the intensity of Karst process and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test. Carsologica Sinica, 2011, 30(4):379-382. ] | |
[26] | 王兴山, 张捷, 秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4):447-454. |
[ Wang Xingshan, Zhang Jie, Qin Zhong. Methods for measuring erosion rate of rock: An overview. Advances in Earth Science, 2013, 28(4):447-454. ] | |
[27] |
Dixon J C, Thorn C E, Darmody R G, et al. Weathering rates of fine pebbles at the soil surface in Kärkevagge, Swedish Lapland[J]. Catena, 2001, 45(4):273-286.
doi: 10.1016/S0341-8162(01)00152-7 |
[28] |
Moses C, Robinson D, Barlow J. Methods for measuring rock surface weathering and erosion: A critical review[J]. Earth-Science Reviews, 2014, 135:141-161.
doi: 10.1016/j.earscirev.2014.04.006 |
[29] | 袁道先. 中国西南部的岩溶及其与华北岩溶的对比[J]. 第四纪研究, 1992, 12(4):352-361. |
[ Yuan Daoxian. Karst in southwest China and its comparison with Karst in North China. Quaternary Sciences, 1992, 12(4):352-361. ] | |
[30] | 袁道先. 岩溶与全球变化研究[J]. 地球科学进展, 1995, 10(5):471-474. |
[ Yuan Daoxian. Karst and global change. Advances in Earth Science, 1995, 10(5):471-474. ] | |
[31] |
Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132:1-12.
doi: 10.1016/j.earscirev.2014.01.005 |
[32] | 贺晋云, 张明军, 王鹏, 等. 近50年西南地区极端干旱气候变化特征[J]. 地理学报, 2011, 66(9):1179-1190. |
[ He Jinyun, Zhang Mingjun, Wang Peng, et al. Climate characteristics of the extreme drought events in Southwest China during recent 50 years. Acta Geographica Sinica, 2011, 66(9):1179-1190. ] | |
[33] | Lin W, Wen C, Wen Z, et al. Drought in Southwest China: A review[J]. Atmospheric and Oceanic Science Letters, 2015, 8(6):339-344. |
[34] |
Han L Y, Zhang Q, Ma P L, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124:517-528.
doi: 10.1007/s00704-015-1432-z |
[35] |
Chen Y, Zhai P. Changing structure of wet periods across southwest China during 1961-2012[J]. Climate Research, 2014, 61(2):123-131.
doi: 10.3354/cr01247 |
[36] |
Liu B J, Li Y, Chen J F, et al. Long-term change in precipitation structure over the Karst area of Southwest China[J]. International Journal of Climatology, 2016, 36(6):2417-2434.
doi: 10.1002/joc.4501 |
[37] |
Zhang C, Pei J G, Xie Y Q, et al. Impact of land use covers upon karst processes in a typical Fengcong depression system of Nongla, Guangxi, China[J]. Environmental Geology, 2008, 55(8):1621-1626.
doi: 10.1007/s00254-007-1111-1 |
[38] | 李涛, 赵东兴, 张美良, 等. 土壤CO2、土壤水的动态特征及其对岩溶作用的驱动[J]. 热带地理, 2013, 33(5):575-581. |
[ Li Tao, Zhao Dongxing, Zhang Meiliang, et al. Dynamic characteristics of the soil CO2 and soil water chemistry, and their driving action on karstification. Tropical Geography, 2013, 33(5):575-581. ] |
[1] | SUN Yijie, LIU Xianfeng, REN Zhiyuan, DUAN Yifang. Spatiotemporal changes of droughts and heatwaves on the Loess Plateau during 1960-2016 [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 591-601. |
[2] | NING Siyu, HUANG Jing, WANG Zhiqiang, WANG Huimin. Indirect economic losses of flood disaster based on an input-output model: A case study of Hubei Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 420-432. |
[3] | WU Zemian, QIU Jianxiu, LIU Suxia, MO Xingguo. Advances in agricultural drought monitoring based on soil moisture [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1758-1769. |
[4] | Li LIU, Ning LI, Zhengtao ZHANG, Jieling FENG, Xi CHEN, Kou BAI, Chengfang HUANG. Spatiotemporal distribution of capital stock exposure of 17 sectors for individual provinces in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 546-555. |
[5] | Weijiang LI, Jiahong WEN, Xiande LI. Progress of research on economic loss assessment of disasters in industrial networks [J]. PROGRESS IN GEOGRAPHY, 2018, 37(3): 330-341. |
[6] | Ning LI, Zhengtao ZHANG, Xi CHEN, Jieling FENG. Importance of economic loss evaluation in natural hazard and disaster research [J]. PROGRESS IN GEOGRAPHY, 2017, 36(2): 256-263. |
[7] | Yuzhong SHI, Jun WANG, Ziqiao WANG, Daming LU, Xinjun YANG. Rural household vulnerability to drought and adaptation mechanism on the Loess Plateau [J]. PROGRESS IN GEOGRAPHY, 2017, 36(10): 1281-1293. |
[8] | Yungang LI, Jiaonan HE, Xue LI. Hydrological and meteorological droughts in the Red River Basin of Yunnan Province based on SPEI and SDI Indices [J]. PROGRESS IN GEOGRAPHY, 2016, 35(6): 758-767. |
[9] | Sha YIN, Jia CHEN, Kongsen WU, Xinjun YANG. Adaptation of farming households under drought stress:Based on a survey in the Minqin Oasis [J]. PROGRESS IN GEOGRAPHY, 2016, 35(5): 644-654. |
[10] | Weixia YIN, Han YU, Shujuan CUI, Jing’ai WANG. Review on methods for estimating the loss of life induced by heavy rain and floods [J]. PROGRESS IN GEOGRAPHY, 2016, 35(2): 148-158. |
[11] | Anzhou ZHAO, Xianfeng LIU, Xiufang ZHU, Yaozhong PAN, Yizhan LI. Spatiotemporal patterns of droughts based on SWAT model for the Weihe River Basin [J]. PROGRESS IN GEOGRAPHY, 2015, 34(9): 1156-1166. |
[12] | Shaohong WU, Jing JIN, Jingyun ZHENG. Estimation of the ratio of injured people to fatalities in earthquakes in China [J]. PROGRESS IN GEOGRAPHY, 2015, 34(7): 918-925. |
[13] | YU Han, WANG Jing'ai, CHAI Mei, SHI Peijun. Review on research methods of disaster loss accumulation and amplification of disaster chains [J]. PROGRESS IN GEOGRAPHY, 2014, 33(11): 1498-1511. |
[14] | XI Xiumei, ZHAO Jingbo. Characteristics of Drought Disasters and Climate in Ordos Plateau during the Qing Dynasty [J]. PROGRESS IN GEOGRAPHY, 2012, 31(9): 1180-1185. |
[15] | LI Fen, YUWenjin, ZHANG Jianxin , ZHU Fengqin, LIU Yingli. Review of Drought Disaster Evaluation [J]. PROGRESS IN GEOGRAPHY, 2011, 30(7): 891-898. |
|