PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (10): 1691-1703.doi: 10.18306/dlkxjz.2021.10.007
• Articles • Previous Articles Next Articles
ZHAO Lei1(), XIE Feng2,*(
), XU Chenchen3,4,5, ZHONG Ruomei1, WEN Xiaohang1
Received:
2020-11-25
Revised:
2021-01-26
Online:
2021-10-28
Published:
2021-12-28
Contact:
XIE Feng
E-mail:zhaolei@cuit.edu.cn;xiefengqd@163.com
Supported by:
ZHAO Lei, XIE Feng, XU Chenchen, ZHONG Ruomei, WEN Xiaohang. High-resolution simulation analysis of meteorological factors of unmanned aerial vehicle air route in the Beijing-Tianjin-Hebei region[J].PROGRESS IN GEOGRAPHY, 2021, 40(10): 1691-1703.
Tab.2
Comparison of RMSE, Bias and correlation coefficient of temperature, dew point temperature, and wind speed at different weather stations
温度/℃ | 露点温度/℃ | 风速/(m·s-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
天津 | 密云 | 蔚县 | 张家口 | 天津 | 密云 | 蔚县 | 张家口 | 天津 | 密云 | 蔚县 | 张家口 | ||
未同化 | RMSE | 1.9 | 2.8 | 1.5 | 1.7 | 1.8 | 2.1 | 3.8 | 2.9 | 2.3 | 3.0 | 5.3 | 2.7 |
Bias | -0.9 | 1.8 | 0.5 | 0.4 | -1.2 | -1.2 | -3.5 | -2.7 | 0.4 | 2.4 | 4.2 | 2.1 | |
R | 0.74 | 0.85 | 0.52 | 0.82 | 0.67 | 0.10 | -0.42 | 0.17 | 0.70 | 0.87 | 0.52 | 0.25 | |
同化 | RMSE | 1.4 | 1.3 | 1.0 | 1.7 | 0.9 | 1.8 | 1.6 | 2.4 | 1.6 | 3.5 | 2.8 | 3.0 |
Bias | 0.1 | -0.5 | -0.3 | -0.6 | 0.5 | -1.2 | -1.5 | -2.4 | 0.5 | 3.1 | 1.8 | 2.4 | |
R | 0.98 | 0.98 | 0.98 | 0.95 | 0.99 | 0.97 | 0.99 | 0.99 | 0.74 | 0.85 | 0.4 | 0.25 |
[1] | 中国航空运输协会. 2019中国民用无人机发展报告[EB/OL]. 2020-07-22 [2020-10-01]. https://uav.huanqiu.com/article/3z9ZP1kCv3K. |
[China Air Transport Association. China's development report on civil drones 2019. 2020-07-22 [2020-10-01]. https://uav.huanqiu.com/article/3z9ZP1kCv3K. ] | |
[2] | 中华人民共和国工业和信息化部. 工业和信息化部关于促进和规范民用无人机制造业发展的指导意见2017.[EB/OL]. 2017-12-22 [2020-10-01]. http://www.miit.gov.cn/n1146290/n4388791/c5976311/content.html. |
[Ministry of Industry and Information Technology. Guiding opinions on promoting and regulating the development of civil UAV manufacturing 2017. 2017-12-22 [2020-10-01]. http://www.miit.gov.cn/n1146290/n4388791/c5976311/content.html. ] | |
[3] | 陈婷, 杨泓, 李亚玲. 气象要素对多旋翼无人机飞行的影响[J]. 中国设备工程, 2018(1):170-171. |
[ Chen Ting, Yang Hong, Li Yaling. Influence of meteorological Elements on the flight of multi-rotor UAV. China Plant Engineering, 2018(1):170-171. ] | |
[4] | 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1):6-34. |
[ Quan Quan, Li Gang, Bai Yiqin, et al. Low altitude UAV traffic management: An introductory overview and proposal. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):6-34. ] | |
[5] | 冯志轩, 余娇. 浅谈无人机飞行的空管保障措施[J]. 科技资讯, 2019, 17(4):112-113. |
[ Feng Zhixuan, Yu Jiao. Discussion on the air traffic control guarantee measures of UAV. Science and Technology Information, 2019, 17(4):112-113. ] | |
[6] | 吴红军, 行鸿彦, 张金玉. 低空飞行安全气象保障技术[J]. 电子测量技术, 2018, 41(9):10-15. |
[ Wu Hongjun, Xing Hongyan, Zhang Jinyu. Low altitude flight safety weather protection technology. Electronic Measurement Technology, 2018, 41(9):10-15. ] | |
[7] | 李佳英, 俞小鼎, 王迎春. 用探空资料检验中尺度数值模式对强对流天气的诊断分析能力[J]. 气象, 2006, 32(7):13-17. |
[ Li Jiaying, Yu Xiaoding, Wang Yingchun. Evaluation of convective parameters derived from mesoscale numerical model by sounding data. Meteorological Monthly, 2006, 32(7):13-17. ] | |
[8] | 漆梁波. 高分辨率数值模式在强对流天气预警中的业务应用进展[J]. 气象, 2015, 41(6):661-673. |
[ Qi Liangbo. Operational progress of high-resolution numerical model on severe convective weather warning. Meteorological Monthly, 2015, 41(6):661-673. ] | |
[9] | 闵锦忠, 吴乃庚. 近二十年来暴雨和强对流可预报性研究进展[J]. 大气科学, 2020, 44(5):1039-1056. |
[ Min Jinzhong, Wu Naigeng. Advances in atmospheric predictability of heavy rain and severe convection. Chinese Journal of Atmospheric Sciences, 2020, 44(5):1039-1056. ] | |
[10] |
石先武, 国志兴, 张尧, 等. 风暴潮灾害脆弱性研究综述[J]. 地理科学进展, 2016, 35(7):889-897.
doi: 10.18306/dlkxjz.2016.07.010 |
[ Shi Xianwu, Guo Zhixing, Zhang Yao, et al. A review of research on vulnerability to storm surges. Progress in Geography, 2016, 35(7):889-897. ] | |
[11] |
吴迪, 裴源生, 赵勇, 等. IPCC A1B情景下中国西南地区气候变化的数值模拟[J]. 地理科学进展, 2012, 31(3):275-284.
doi: 10.11820/dlkxjz.2012.03.002 |
[ Wu Di, Pei Yuansheng, Zhao Yong, et al. Numerical simulations of climate change under IPCC A1B scenario in southwestern China. Progress in Geography, 2012, 31(3):275-284. ] | |
[12] | 廖小罕, 徐晨晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究[J]. 无人机, 2018(2):45-49. |
[ Liao Xiaohan, Xu Chenchen, Yue Huanyin. Research on UAV low-altitude public air route planning based on geographic information. Unmanned Vehicles, 2018(2):45-49. ] | |
[13] | 王俊, 周树道, 叶松, 等. 山地条件下的无人机气象威胁度建模与评估方法[J]. 电光与控制, 2012, 19(5):108-112. |
[ Wang Jun, Zhou Shudao, Ye Song, et al. A method of weather threat level modeling and assessment for UAVs mountainous region. Electronics Optics & Control, 2012, 19(5):108-112. ] | |
[14] | 华志强, 黎倩, 黄轩, 等. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5):600-604. |
[ Hua Zhiqiang, Li Qian, Huang Xuan, et al. Analysis of the typical application of laser wind measurement radar in aviation support. Laser Technology, 2020, 44(5):600-604. ] | |
[15] | 窦芳丽, 商建, 吴琼, 等. 风云三号卫星被动微波反演海洋上空云液态水含量[J]. 遥感学报, 2020, 24(6):766-775. |
[ Dou Fangli, Shang Jian, Wu Qiong, et al. Retrieval of cloud liquid water content over global oceans using FY-3C/3D microwave imager. Journal of Remote Sensing, 2020, 24(6):766-775. ] | |
[16] | 崔林丽, 陈昭, 于兴兴, 等. 风云四号卫星东南沿海热带气旋强度深度学习估算[J]. 遥感学报, 2020, 24(7):842-851. |
[ Cui Linli, Chen Zhao, Yu Xingxing, et al. Deep learning estimation of tropical cyclone intensity along the southeast coast of China using FY-4A satellite. Journal of Remote Sensing, 2020, 24(7):842-851. ] | |
[17] |
徐晨晨, 廖小罕, 岳焕印, 等. 基于改进蚁群算法的无人机低空公共航路构建方法[J]. 地球信息科学学报, 2019, 21(4):570-579.
doi: 10.12082/dqxxkx.2019.180392 |
[ Xu Chenchen, Liao Xiaohan, Yue Huanyin et al. Construction of a UAV low-altitude public air route based on an improved ant colony algorithm. Journal of Geo-information Science, 2019, 21(4):570-579. ] | |
[18] |
Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology and Climatology, 2010, 49(9):1831-1844.
doi: 10.1175/2010JAMC2432.1 |
[19] |
Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22:1065-1092.
doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 |
[20] |
Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102:16663-16682.
doi: 10.1029/97JD00237 |
[21] |
Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46:3077-3107.
doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 |
[22] |
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129:569-585.
doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 |
[23] |
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the penn state-ncar MM5 modeling system. Part II: Preliminary model validation[J]. Monthly Weather Review, 2001, 129:587-604.
doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2 |
[24] |
Janjić Z I. The step-mountain coordinate: Physical package[J]. Monthly Weather Review, 1990, 118:1429-1443.
doi: 10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2 |
[25] |
Foreman R J, Emeis S. A method for increasing the turbulent kinetic energy in the Mellor-Yamada-Janjić boundary-layer parametrization[J]. Boundary-layer Meteorology, 2012, 145(2):329-349.
doi: 10.1007/s10546-012-9727-4 |
[26] |
Sušelj K, Sood A. Improving the Mellor-Yamada-Janjić parameterization for wind conditions in the marine planetary boundary layer[J]. Boundary-layer Meteorology, 2010, 136(2):301-324.
doi: 10.1007/s10546-010-9502-3 |
[27] | Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme[M]// Emanuel K A, Raymond D J. The representation of cumulus convection in numerical models meter. Boston, USA: American Meteorological Society, 1993, 46:165-170. |
[28] |
Barker D M, Huang W, Guo Y R, et al. A three-dimensional variational data assimilation system for MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132(4):897-914.
doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2 |
[29] |
Lorenc A C. Analysis-methods for numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112:1177-1194.
doi: 10.1002/(ISSN)1477-870X |
[30] |
Barker D M, Huang W, Guo Y R, et al. A three-dimensional variational data assimilation system for MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132:897-914.
doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2 |
[31] |
Gu J F, Xiao Q N, Kuo Y H, et al. Assimilation and simulation of typhoon Rusa (2002) using the WRF system[J]. Advances in Atmospheric Sciences, 2005, 22:415-427.
doi: 10.1007/BF02918755 |
[32] |
Tarek M, Brissette F P, Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America[J]. Hydrology and Earth System Sciences, 2020, 24(5):2527-2544.
doi: 10.5194/hess-24-2527-2020 |
[33] | 廖小罕, 许浩. 无人机运行监管技术发展与应用[M]. 北京: 科学出版社, 2020: 112. |
[ Liao Xiaohan, Xu Hao. UAS operational regulation technology development and applications. Beijing, China: Science Press, 2020: 112. ] | |
[34] | 黄冠. 低空风切变的形成过程以及影响飞行安全的因素[J]. 科技展望, 2015, 25(15):150. |
[ Huang Guan. The formation process of low-level wind shear and factors affecting flight safety. Science and Technology, 2015, 25(15):150. ] |
|