PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1550-1569.doi: 10.18306/dlkxjz.2021.09.010
• Industrial Applications of UAV • Previous Articles Next Articles
GUO Qinghua1,2(), HU Tianyu3,4, LIU Jin3,4, JIN Shichao5, XIAO Qing2,4,6, YANG Guijun7, GAO Xianlian8, XU Qiang9, XIE Pinhua10,11,12, PENG Chigang13, YAN Li14
Received:
2021-01-14
Revised:
2021-06-30
Online:
2021-09-28
Published:
2021-09-28
Supported by:
GUO Qinghua, HU Tianyu, LIU Jin, JIN Shichao, XIAO Qing, YANG Guijun, GAO Xianlian, XU Qiang, XIE Pinhua, PENG Chigang, YAN Li. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1550-1569.
[1] |
Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92:79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 |
[2] | 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-513, 540. |
[ Li Deren, Li Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513, 540. ] | |
[3] | 廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052. |
[ Liao Xiaohan, Xiao Qing, Zhang Hao. UAV remote sensing: Popularization and expand application development trend. Journal of Remote Sensing, 2019, 23(6):1046-1052. ] | |
[4] |
Simic Milas A, Cracknell A P, Warner T A. Drones: The third generation source of remote sensing data[J]. International Journal of Remote Sensing, 2018, 39(21):7125-7137.
doi: 10.1080/01431161.2018.1523832 |
[5] | 单杰, 秦昆, 黄长青, 等. 众源地理数据处理与分析方法探讨[J]. 武汉大学学报(信息科学版), 2014, 39(4):390-396. |
[ Shan Jie, Qin Kun, Huang Changqing, et al. Methods of crowd sourcing geographic data processing and analysis. Geomatics and Information Science of Wuhan University, 2014, 39(4):390-396. ] | |
[6] |
Bhardwaj A, Sam L, Akanksha, et al. UAVs as remote sensing platform in glaciology: Present applications and future prospects[J]. Remote Sensing of Environment, 2016, 175:196-204.
doi: 10.1016/j.rse.2015.12.029 |
[7] |
Tsouros D C, Bibi S, Sarigiannidis P G. A review on UAV-based applications for precision agriculture[J]. Information, 2019, 10(11):349. doi: 10.3390/info10110349.
doi: 10.3390/info10110349 |
[8] |
Guimarães N, Pádua L, Marques P, et al. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities[J]. Remote Sensing, 2020, 12(6):1046. doi: 10.3390/rs12061046.
doi: 10.3390/rs12061046 |
[9] |
Nex F, Remondino F. UAV for 3D mapping applications: A review[J]. Applied Geomatics, 2014, 6(1):1-15.
doi: 10.1007/s12518-013-0120-x |
[10] |
Crommelinck S, Bennett R, Gerke M, et al. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping[J]. Remote Sensing, 2016, 8(8):689. doi: 10.3390/rs8080689.
doi: 10.3390/rs8080689 |
[11] |
Kaneko K, Nohara S. Review of effective vegetation mapping using the UAV (unmanned aerial vehicle) method[J]. Journal of Geographic Information System, 2014, 6(6):733-742.
doi: 10.4236/jgis.2014.66060 |
[12] |
Kerle N, Nex F, Gerke M, et al. UAV-based structural damage mapping: A review[J]. ISPRS International Journal of Geo-Information, 2020, 9(1):14. doi: 10.3390/ijgi9010014.
doi: 10.3390/ijgi9010014 |
[13] | Zhong Y F, Wang X Y, Xu Y, et al. Mini-UAV borne hyperspectral remote sensing: A review[C]// 2017 IEEE international geoscience and remote sensing symposium (IGARSS). Fort Worth, USA: IEEE, 2017: 5908-5911. |
[14] |
Xiang T Z, Xia G S, Zhang L P. Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(3):29-63.
doi: 10.1109/MGRS.6245518 |
[15] |
Watts A C, Ambrosia V G, Hinkley E A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use[J]. Remote Sensing, 2012, 4(6):1671-1692.
doi: 10.3390/rs4061671 |
[16] | Keane J F, Carr S S. A brief history of early unmanned aircraft[J]. Johns Hopkins APL Technical Digest, 2013, 32(3):558-571. |
[17] | 廖小罕, 周成虎. 轻小型无人机遥感发展报告[M]. 北京: 科学出版社, 2016. |
[ Liao Xiaohan, Zhou Chenghu. Remote sensing development report of light and small UAV. Beijing, China: Science Press, 2016. ] | |
[18] | 崔志强, 胥值礼, 李军峰, 等. 无人机航空物探技术研发应用现状与展望[J]. 物探化探计算技术, 2016, 38(6):740-745. |
[ Cui Zhiqiang, Xu Zhili, Li Junfeng, et al. The R & D application of UAV airborne geophysical survey and its development trend. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(6):740-745. ] | |
[19] | 周帅. 无人直升机在民用行业的应用与发展[J]. 舰船电子对抗, 2013, 36(1):117-120. |
[ Zhou Shuai. Application and development of unmanned helicopter in civil industry. Shipborad Electronic Countermeasure, 2013, 36(1):117-120. ] | |
[20] | 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. |
[ Liu Li, Du Mengyao, Zhang Xiaohui, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162. ] | |
[21] |
Wang J J, Jiang C X, Han Z, et al. Taking drones to the next level: Cooperative distributed unmanned-aerial-vehicular networks for small and mini drones[J]. IEEE Vehicular Technology Magazine, 2017, 12(3):73-82.
doi: 10.1109/MVT.2016.2645481 |
[22] | 孙杰, 林宗坚, 崔红霞. 无人机低空遥感监测系统[J]. 遥感信息, 2003, 18(1):49-50, 27. |
[ Sun Jie, Lin Zongjian, Cui Hongxia, et al. Low-altitide UAV remote sensing monitoring system. Remote Sensing Information, 2003, 18(1):49-50, 27. ] | |
[23] | 李月, 杨灿坤, 周春平, 等. 无人机载高光谱成像设备研究及应用进展[J]. 测绘通报, 2019(9):1-6, 17. |
[ Li Yue, Yang Cankun, Zhou Chunping, et al. Advance and application of UAV hyperspectral imaging equipment. Bulletin of Surveying and Mapping, 2019(9):1-6, 17. ] | |
[24] |
Hu T, Sun X L, Su Y J, et al. Development and performance evaluation of a very low-cost UAV-lidar system for forestry applications[J]. Remote Sensing, 2021, 13(1):77. doi: 10.3390/rs13010077.
doi: 10.3390/rs13010077 |
[25] | 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4):333-349. |
[ Wang Yanfei, Liu Chang, Zhan Xueli, et al. Technology and applications of UAV synthetic aperture radar system. Journal of Radars, 2016, 5(4):333-349. ] | |
[26] | 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18):1-12. |
[ Wang Pei, Luo Xiwen, Zhou Zhiyan, et al. Key technology for remote sensing information acquisition based on micro UAV. Transactions of the CSAE, 2014, 30(18):1-12. ] | |
[27] | 丁丽霞, 周斌, 王人潮. 遥感监测中 5 种相对辐射校正方法研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3):269-276. |
[ Ding Lixia, Zhou Bin, Wang Renchao. Comparison of five relative radiometric normalization techniques for remote sensing monitoring. Journal of Zhejiang University (Agriculture and Life Sciences), 2005, 31(3):269-276. ] | |
[28] | 邢宇. 小波变换在遥感图像相对辐射校正中的应用[J]. 测绘与空间地理信息, 2015, 38(6):13-14, 31. |
[ Xing Yu. Application of wavelet transform in relative radiometric correction of remote sensing image. Geomatics & Spatial Information Technology, 2015, 38(6):13-14, 31. ] | |
[29] |
Gore Biday S, Bhosle U. Relative radiometric correction of multitemporal satellite imagery using Fourier and wavelet transform[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(2):201-213.
doi: 10.1007/s12524-011-0155-6 |
[30] |
Li W Z, Sun K M, Li D R, et al. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes[J]. Journal of Applied Remote Sensing, 2016, 10(3):036023. doi: 10.1117/1.JRS.10.036023.
doi: 10.1117/1.JRS.10.036023 |
[31] | 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学: 地球科学, 2012, 42(6):805-813. |
[ Li Deren, Tong Qingxi, Li Rongxing, et al. Some frontier scientific questions on high-resolution Earth observation. Scientia Sinica Terrae, 2012, 42(6):805-813. ] | |
[32] | 李焱. 无人机遥感摄影图像处理[D]. 上海: 华东师范大学, 2009. |
[ Li Yan. Image processing of unmanned helicopter remote sensing. Shanghai, China: East China Normal University, 2009. ] | |
[33] | Leese J A, Novak C S, Clark B B. An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation[J]. Journal of Applied Meteorology and Climatology, 1971, 10(1):118-132. |
[34] | Barnea D I, Silverman H F. A class of algorithms for fast digital image registration[J]. IEEE Transactions on Computers, 1972, 100(2):179-186. |
[35] |
Mohammed H M, El-Sheimy N. A descriptor-less well-distributed feature matching method using geometrical constraints and template matching[J]. Remote Sensing, 2018, 10(5):747. doi: 10.3390/rs10050747.
doi: 10.3390/rs10050747 |
[36] | 贾迪, 朱宁丹, 杨宁华, 等. 图像匹配方法研究综述[J]. 中国图象图形学报, 2019, 24(5):677-699. |
[ Jia Di, Zhu Ningdan, Yang Ninghua, et al. Image matching methods. Journal of Image and Graphics, 2019, 24(5):677-699. ] | |
[37] | 付波. 基于GPU 的 SIFT 和 SURF 算法的研究与实现[D]. 广州: 广东工业大学, 2014. |
[ Fu Bo. Research and realization on SIFT and SURF algorithm based on GPU. Guangzhou, China: Guangdong University of Technology, 2014. ] | |
[38] |
Yao H, Qin R J, Chen X Y. Unmanned aerial vehicle for remote sensing applications: A review[J]. Remote Sensing, 2019, 11(12):1443. doi: 10.3390/rs11121443.
doi: 10.3390/rs11121443 |
[39] |
Jay S, Maupas F, Bendoula R, et al. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping[J]. Field Crops Research, 2017, 210:33-46.
doi: 10.1016/j.fcr.2017.05.005 |
[40] |
Xu Z, Shen X, Cao L, et al. Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102173. doi: 10.1016/j.jag.2020.102173.
doi: 10.1016/j.jag.2020.102173 |
[41] |
Hyyppä E, Hyyppä J, Hakala T, et al. Under-canopy UAV laser scanning for accurate forest field measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:41-60.
doi: 10.1016/j.isprsjprs.2020.03.021 |
[42] |
Yu F J, Liu Y F, Fan L Q, et al. Design and implementation of atmospheric multi-parameter sensor for UAV-based aerosol distribution detection[J]. Sensor Review, 2017, 37(2):196-210.
doi: 10.1108/SR-09-2016-0199 |
[43] |
García-Santos V, Cuxart J, Jiménez MA, et al. Study of temperature heterogeneities at sub-kilometric scales and influence on surface: Atmosphere energy interactions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):640-654.
doi: 10.1109/TGRS.2018.2859182 |
[44] |
Hoffmann H, Nieto H, Jensen R, et al. Estimating evaporation with thermal UAV data and two-source energy balance models[J]. Hydrology and Earth System Sciences, 2016, 20(2):697-713.
doi: 10.5194/hess-20-697-2016 |
[45] |
Webster C, Westoby M, Rutter N, et al. Three-dimensional thermal characterization of forest canopies using UAV photogrammetry[J]. Remote Sensing of Environment, 2018, 209:835-847.
doi: 10.1016/j.rse.2017.09.033 |
[46] |
Yu N, Li L J, Schmitz N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187:91-101.
doi: 10.1016/j.rse.2016.10.005 |
[47] |
Park J Y, Muller-Landau H C, Lichstein J W, et al. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images[J]. Remote Sensing, 2019, 11(13):1534. doi: 10.3390/rs11131534.
doi: 10.3390/rs11131534 |
[48] |
Hsu W L, Jhuang J Y, Chen Y S, et al. Use of unmanned aerial vehicle to execute water conservation design for hillsides[J]. Sensors and Materials, 2019, 31(1):221-232.
doi: 10.18494/SAM.2019.2172 |
[49] |
Li X X, Yang Q, Chen Z B, et al. Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems[J]. IET Renewable Power Generation, 2017, 11(10):1234-1244.
doi: 10.1049/rpg2.v11.10 |
[50] |
Puliti S, Breidenbach J, Astrup R. Estimation of forest growing stock volume with UAV laser scanning data: Can it be done without field data?[J]. Remote Sensing, 2020, 12(8):1245. doi: 10.3390/rs12081245.
doi: 10.3390/rs12081245 |
[51] |
Maes W H, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture[J]. Trends in Plant Science, 2019, 24(2):152-164.
doi: 10.1016/j.tplants.2018.11.007 |
[52] |
Yang G J, Liu J G, Zhao C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives[J]. Frontiers in Plant Science, 2017, 8:1111. doi: 10.3389/fpls.2017.01111.
doi: 10.3389/fpls.2017.01111 |
[53] |
Liu H Y, Zhu H C, Wang P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data[J]. International Journal of Remote Sensing, 2017, 38:2117-2134.
doi: 10.1080/01431161.2016.1253899 |
[54] |
Yue J, Feng H, Jin X, et al. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera[J]. Remote Sensing, 2018, 10(7):1138. doi: 10.3390/rs10071138.
doi: 10.3390/rs10071138 |
[55] |
Zhang N, Zhang X L, Yang G J, et al. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images[J]. Remote Sensing of Environment, 2018, 217:323-339.
doi: 10.1016/j.rse.2018.08.024 |
[56] | 杨文攀, 李长春, 杨浩, 等. 基于无人机热红外与数码影像的玉米冠层温度监测[J]. 农业工程学报, 2018, 34(17):68-75, 301. |
[ Yang Wenpan, Li Changchun, Yang Hao, et al. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery. Transactions of the CSAE, 2018, 34(17):68-75, 301. ] | |
[57] |
Zarco-Tejada P J, González-Dugo V, Berni J A J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera[J]. Remote Sensing of Environment, 2012, 117:322-337.
doi: 10.1016/j.rse.2011.10.007 |
[58] |
Peña J M, Torres-Sánchez J, de Castro A I, et al. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images[J]. PLoS One, 2013, 8(10):e77151. doi: 10.1371/journal.pone.0077151.
doi: 10.1371/journal.pone.0077151 |
[59] |
Zhou C Q, Yang G J, Liang D, et al. An integrated skeleton extraction and pruning method for spatial recognition of maize seedlings in MGV and UAV remote images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4618-4632.
doi: 10.1109/TGRS.2018.2830823 |
[60] | 赵国帅. 无人机遥感在林业中的应用与需求分析[J]. 福建林业科技, 2017, 44(1):136-140. |
[ Zhao Guoshuai. Application and demand analysis of unmanned aerial vehicle remote sensing in forestry. Journal of Fujian Forestry Science and Technology, 2017, 44(1):136-140. ] | |
[61] | 郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(6):459-478. |
[ Guo Qinghua, Liu Jin, Tao Shengli, et al. Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling. Chinese Science Bulletin, 2014, 59(6):459-478. ] | |
[62] | 轩俊伟, 郑江华, 倪亦非, 等. 基于动力三角翼平台的草原鼠害遥感监测研究[J]. 中国植保导刊, 2015, 35(2):52-55. |
[ Xuan Junwei, Zheng Jianghua, Ni Yifei, et al. Research on remote sensing monitoring of grassland rodents based on power delta wing platform. China Plant Protection, 2015, 35(2):52-55. ] | |
[63] | 李风贤. 无人机技术在草原生态遥感监测中的应用与探讨[J]. 测绘通报, 2017(7):99-102, 107. |
[ Li Fengxian. Application and discussion of UAV technology in ecological remote sensing monitoring of grassland. Bulletin of Surveying and Mapping, 2017(7):99-102, 107. ] | |
[64] | 张增, 王兵, 伍小洁, 等. 无人机森林火灾监测中火情检测方法研究[J]. 遥感信息, 2015, 30(1):107-110, 124. |
[ Zhang Zeng, Wang Bing, Wu Xiaojie, et al. An algorithm of forest fire detection based on UAV remote sensing. Remote Sensing Information, 2015, 30(1):107-110, 124. ] | |
[65] | 张严风, 赵璠, 寇卫利, 等. 无人机在林业灾害监测中的应用[J]. 世界林业研究, 2020, 33(2):62-67. |
[ Zhao Yanfeng, Zhao Fan, Kou Weili, et al. Application of UAV to forestry disaster monitoring. World Forestry Research, 2020, 33(2):62-67. ] | |
[66] |
Zhang Y, Yuan X X, Li W Z, et al. Automatic power line inspection using UAV images[J]. Remote Sensing, 2017, 9(8):824. doi: 10.3390/rs9080824.
doi: 10.3390/rs9080824 |
[67] |
Menéndez O, Pérez M, Auat Cheein F. Visual-based positioning of aerial maintenance platforms on overhead transmission lines[J]. Applied Sciences, 2019, 9(1):165. doi: 10.3390/app9010165.
doi: 10.3390/app9010165 |
[68] |
Yang J T, Kang Z Z. Voxel-based extraction of transmission lines from airborne LiDAR point cloud data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10):3892-3904.
doi: 10.1109/JSTARS.4609443 |
[69] |
Jiang S, Jiang W S, Huang W, et al. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line[J]. Remote Sensing, 2017, 9(3):278. doi: 10.3390/rs9030278.
doi: 10.3390/rs9030278 |
[70] |
Chen C, Yang B, Song S, et al. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-borne LIDAR data[J]. Remote Sensing, 2018, 10(4):613. doi: 10.3390/rs10040613.
doi: 10.3390/rs10040613 |
[71] | 王柯, 付怡然, 彭向阳, 等. 无人机低空遥感技术进展及典型行业应用综述[J]. 测绘通报, 2017(S1):79-83. |
[ Wang Ke, Fu Yiran, Peng Xiangyang, et al. Overview of UAV low altitude remote sensing technology and application in typical industries. Bulletin of Surveying and Mapping, 2017(S1):79-83. ] | |
[72] | 韩宇. 基于旋翼无人机倾斜摄影测量的城市三维实景建模研究[J]. 测绘与空间地理信息, 2019, 42(4):175-178. |
[ Han Yu. Research of 3D city modeling based on unmanned gyroplane's oblique photogrammetry. Geomatics & Spatial Information Technology, 2019, 42(4):175-178. ] | |
[73] | 刘文清, 谢品华, 胡肇焜, 等. 大气环境高灵敏光谱探测技术[J]. 环境监控与预警, 2019, 11(5):1-7. |
[ Liu Wen-qing, Xie Pinhua, Hu Zhaokun, et al. High-sensitivity spectroscopic techniques for atmospheric environment monitoring. Environmental Monitoring and Forewarning, 2019, 11(5):1-7. ] | |
[74] |
Karion A, Sweeney C, Wolter S, et al. Long-term greenhouse gas measurements from aircraft[J]. Atmospheric Measurement Techniques, 2013, 6(3):511-526.
doi: 10.5194/amt-6-511-2013 |
[75] |
Mori T, Hashimoto T, Terada A, et al. Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption[J]. Earth, Planets and Space, 2016, 68(1):49. doi: 10.1186/s40623-016-0418-0.
doi: 10.1186/s40623-016-0418-0 |
[76] |
Villa T F, Salimi F, Morton K, et al. Development and validation of a UAV based system for air pollution measurements. Sensors, 2016, 16(12):2202. doi: 10.3390/s16122202.
doi: 10.3390/s16122202 |
[77] |
Merlaud A, Tack F, Constantin D, et al. The small whiskbroom imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign[J]. Atmospheric Measurement Techniques, 2018, 11(1):551-567.
doi: 10.5194/amt-11-551-2018 |
[78] |
Andrews S J, Carpenter L J, Apel E C, et al. A comparison of very short lived halocarbon (VSLS) and DMS aircraft measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST[J]. Atmospheric Measurement Techniques, 2016, 9(10):5213-5225.
doi: 10.5194/amt-9-5213-2016 |
[79] |
Fan X M, Xu Q, Scaringi G, et al. The "long" runout rock avalanche in Pusa, China, on August 28, 2017: A preliminary report[J]. Landslides, 2019, 16(1):139-154.
doi: 10.1007/s10346-018-1084-z |
[80] |
Fan X M, Xu Q, Alonso-Rodriguez A, et al. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response[J]. Landslides, 2019, 16(5):1003-1020.
doi: 10.1007/s10346-019-01159-x |
[81] | 程多祥. 无人机移动测量数据快速获取与处理[M]. 北京: 测绘出版社, 2015. |
[ Cheng Duoxiang. Fast acquisition and processing of UAV aerial photogrammetry data. Beijing, China: Surveying and Mapping Publishing House, 2015. ] | |
[82] |
Fan X M, Scaringi G, Korup O, et al. Earthquake‐induced chains of geologic hazards: Patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019, 57(2):421-503.
doi: 10.1029/2018RG000626 |
[83] |
Matasci B, Stock G M, Jaboyedoff M, et al. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms[J]. Landslides, 2018, 15(5):859-878.
doi: 10.1007/s10346-017-0911-y |
[84] |
Shi W Z, Deng S S, Xu W B. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM[J]. Geomorphology, 2018, 303:229-242.
doi: 10.1016/j.geomorph.2017.12.005 |
[85] |
Zhang Y C, Yue P, Zhang G K, et al. Augmented reality mapping of rock mass discontinuities and rockfall susceptibility based on unmanned aerial vehicle photogrammetry[J]. Remote Sensing, 2019, 11(11):1311. doi: 10.3390/rs11111311.
doi: 10.3390/rs11111311 |
[86] |
Fernández T, Pérez J L, Cardenal J, et al. Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques[J]. Remote Sensing, 2016, 8(10):837. doi: 10.3390/rs8100837.
doi: 10.3390/rs8100837 |
[87] |
Li M H, Zhang L, Dong J, et al. Characterization of pre-and post-failure displacements of the Huangnibazi landslide in Li County with multi-source satellite observations[J]. Engineering Geology, 2019, 257:105140. doi: 10.1016/j.enggeo.2019.05.017.
doi: 10.1016/j.enggeo.2019.05.017 |
[88] |
Scaioni M, Longoni L, Melillo V, et al. Remote sensing for landslide investigations: An overview of recent achievements and perspectives[J]. Remote Sensing, 2014, 6(10):9600-9652.
doi: 10.3390/rs6109600 |
[89] |
Turner D, Lucieer A, de Jong S. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)[J]. Remote Sensing, 2015, 7:1736-1757.
doi: 10.3390/rs70201736 |
[90] | 许强, 董秀军, 李为乐. 基于天—空—地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966. |
[ Xu Qiang, Dong Xiujun, Li Weile. Integrated space-air-ground early detection, monitoring and warning systerm for potential catastrophic geohazards. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966. ] | |
[91] |
Liao X H, Zhang Y, Su F Z, et al. UAVs surpassing satellites and aircraft in remote sensing over China[J]. International Journal of Remote Sensing, 2018, 39(21):7138-7153.
doi: 10.1080/01431161.2018.1515511 |
[92] | 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. |
[ Gong Jianya, Ji Shunping. Photogrammetry and deep learning. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. ] | |
[93] |
Zhong J Y, Yang B, Huang G Y, et al. Remote sensing image fusion with convolutional neural network[J]. Sensing and Imaging, 2016, 17(1):10. doi: 0.1007/s11220-016-0135-6.
doi: 0.1007/s11220-016-0135-6 |
[94] |
Yuan Y, Zheng X T, Lu X Q. Hyperspectral image superresolution by transfer learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5):1963-1974.
doi: 10.1109/JSTARS.4609443 |
[95] |
Huang W, Xiao L, Wei Z H, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041.
doi: 10.1109/LGRS.2014.2376034 |
[96] |
Vetrivel A, Gerke M, Kerle N, et al. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140:45-59.
doi: 10.1016/j.isprsjprs.2017.03.001 |
[1] | WANG Yong, YANG Yusen, WANG Shibo, YANG Yu, ZHANG Rui. A review on the architecture construction of remote sensing data from unmanned aerial vehicle networking [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1467-1479. |
[2] | Mingwei ZHAO, Tianxiang YUE. Classification of high accuracy surface modeling (HASM) methods and their recent developments [J]. PROGRESS IN GEOGRAPHY, 2016, 35(4): 401-408. |
|