[1] |
陈唯实, 黄毅峰, 陈小龙, 等. 机场净空区飞鸟与非合作无人机目标识别[J]. 民航学报, 2020, 4(3):27-33.
|
|
[ Chen Weishi, Huang Yifeng, Chen Xiaolong, et al. Recognition methods of flying bird and non-cooperative drone targets in airport clearance area. Journal of Civil Aviation, 2020, 4(3):27-33. ]
|
[2] |
何小勇, 韩兵, 张笑语, 等. 一种基于无线电信号特征识别的无人机监测算法设计[J]. 中国无线电, 2019(11):72-74.
|
|
[ He Xiaoyong, Han Bing, Zhang Xiaoyu, et al. A UAS monitoring algorithm based on characteristic reorganization for radio signals. China Radio, 2019(11):72-74. ]
|
[3] |
Jeon S, Shin J W, Lee Y J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks[C]// 2017 25th European signal processing conference (EUSIPCO). Kos, Greece: IEEE, 2017: 1858-1862.
|
[4] |
Mezei J, Molnár A. Drone sound detection by correlation[C]// 2016 IEEE 11th international symposium on applied computational intelligence and informatics (SACI). Timisoara, Romania: IEEE, 2016: 509-518.
|
[5] |
Müller T. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras[EB/OL]. 2017-05-30 [2020-01-07]. https://ui.adsabs.harvard.edu/abs/2017SPIE10190E..18M.
|
[6] |
Zsedrovits T, Bauer P, Nemeth M, et al. Performance analysis of camera rotation estimation algorithms for UAS sense and avoid[C]// 2015 Workshop on research, education and development of unmanned aerial systems (RED-UAS). Cancun, Mexico: IEEE, 2015: 62-71.
|
[7] |
Zulkifli S, Balleri A. Design and development of K-band FMCW radar for Nano-drone detection[C]// 2020 IEEE radar conference (RadarConf20). Florence, Italy: IEEE, 2020: 1-5.
|
[8] |
Semkin V, Haarla J, Pairon T, et al. Analyzing radar cross section signatures of diverse drone models at mmwave frequencies[J]. IEEE Access, 2020, 8:48958-48969.
doi: 10.1109/Access.6287639
|
[9] |
de Quevedo Á D, Urzaiz F I, Menoyo J G, et al. Drone detection and RCS measurements with ubiquitous radar[C]// 2018 International conference on radar (RADAR). Brisbane, Australia: IEEE, 2018: 1-6.
|
[10] |
Caris M, Johannes W, Sieger S, et al. Detection of small UAS with W-band radar[C]// 2017 18th International radar symposium (IRS). Prague, Czech Republic: IEEE, 2017: 1-6.
|
[11] |
Ochodnický J, Matousek Z, Babjak M, et al. Drone detection by Ku-band battlefield radar[C]// 2017 International conference on military technologies (ICMT). Brno, Czech Republic: IEEE, 2017: 613-616.
|
[12] |
Guay R, Drolet G, Bray J R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle[J]. IET Radar, Sonar & Navigation, 2017, 11(7):1155-1160.
doi: 10.1049/rsn2.v11.7
|
[13] |
屈旭涛, 庄东晔, 谢海斌. “低慢小”无人机探测方法[J]. 指挥控制与仿真, 2020, 42(2):128-135.
|
|
[ Qu Xutao, Zhuang Dongye, Xie Haibin. Detection methods for low-slow-small (LSS) UAV. Command Control and Simulation, 2020, 42(2):128-135. ]
|
[14] |
罗淮鸿, 卢盈齐. 国外反“低慢小”无人机能力现状与发展趋势[J]. 飞航导弹, 2019(6):32-36.
|
|
[ Luo Huaihong, Lu Yingqi. Review and prospect of anti-UAS capability for foreign small slow UAS in low-altitude. Aerodynamic Missile Journal, 2019(6):32-36. ]
|
[15] |
Hommes A, Shoykhetbrod A, Noetel D, et al. Detection of acoustic, electro-optical and RADAR signatures of small unmanned aerial vehicles[C]// SPIE security + defence. Proc SPIE 9997, Target and Background Signatures II. Edinburgh, UK, 2016.
|
[16] |
吴浩, 徐婧, 李刚. 民用无人机探测与反制技术现状及发展[J]. 飞航导弹, 2020(9):1-7.
|
|
[ Wu Hao, Xu Jing, Li Gang. Development review of detection and countermeasures technologies for civil UAS. Aerodynamic Missile Journal, 2020(9):1-7. ]
|
[17] |
Young R. Advances in UAS ground-based detect and avoid capability[C]// 2019 Integrated communications, navigation and surveillance conference (ICNS). Herndon, USA: IEEE, 2019: 1-14.
|
[18] |
Murphy J, Kim S. UAS-NAS live virtual constructive distributed test environment characterization report[EB/OL]. 2013-09-01 [2020-01-07]. http://nix.larc.nasa.gov/search.jspƒR=20140009125&qs=N%3D4294966753%2B 4294959645.
|
[19] |
Karhoff B C, Limb J I, Oravsky S W, et al. Eyes in the domestic sky: An assessment of sense and avoid technology for the army's "warrior" unmanned aerial vehicle[C]// 2006 IEEE systems and information engineering design symposium. Charlottesville, USA: IEEE, 2006: 36-42.
|
[20] |
Vanek B, Bauer P, Gozse I, et al. Safety critical platform for mini UAS insertion into the common airspace[C]// AIAA guidance, navigation, and control conference. Reston, USA: AIAA, 2014: 1-14.
|
[21] |
中国民用机场协会. 民用机场无人驾驶航空器系统监测系统通用技术要求[S]. T/CCAATB-0001-2019. 北京, 2019.
|
|
[China Civil Airport Association. General technical requirements for unmanned aircraft system (UAS) detection system of civil airports. T/CCAATB-0001-2019. Beijing, China, 2019. ]
|
[22] |
Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1978, 1:3-28.
|
[23] |
Zimmermann H J. Fuzzy sets theory and its applications[M]. Hingham, USA: Kluwer Academic Publishers, 1985.
|
[24] |
彭龙, 党三磊, 纪伊琳, 等. 基于模糊理论的计量检定设备健康评价模型[J]. 工业计量, 2020, 30(6):90-92.
|
|
[ Peng Long, Dang Sanlei, Ji Yilin, et al. Health evaluation model of metrological verification equipment based on Fuzzy Theory. Industrial Metrology, 2020, 30(6):90-92. ]
|
[25] |
Yang R, Lv R, Li W. Safety risk assessment algorithm of TCAS advisories based on fuzzy clustering[C]// 2019 IEEE 1st international conference on civil aviation safety and information technology (ICCASIT). Kunming, China: IEEE, 2019: 584-587.
|