PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1528-1539.doi: 10.18306/dlkxjz.2021.09.008
• Operation Supervision of UAV • Previous Articles Next Articles
ZHONG Ruomei1(), WEN Xiaohang1,*(
), XU Chenchen2,3,4
Received:
2020-11-27
Revised:
2021-02-15
Online:
2021-09-28
Published:
2021-09-28
Contact:
WEN Xiaohang
E-mail:352708752@qq.com;wxh@cuit.edu.cn
Supported by:
ZHONG Ruomei, WEN Xiaohang, XU Chenchen. Simulation and analysis of wind speed and direction of unmanned aerial vehicle route in the Beijing-Tianjin-Hebei region based on high resolution model[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1528-1539.
[1] | 中国航空运输协会. 2019中国民用无人机发展报告 [EB/OL]. 2020-07-22 [2020-10-01]. https://uav.huanqiu.com/article/3z9ZP1kCv3K. |
[China Air Transport Association. China's development report on civil drones 2019. 2020-07-22 [2020-10-01]. https://uav.huanqiu.com/article/3z9ZP1kCv3K.] | |
[2] | 中华人民共和国工业和信息化部. 工业和信息化部关于促进和规范民用无人机制造业发展的指导意见 [EB/OL]. 2017-12-22 [2020-10-01]. http://www.miit.gov.cn/n1146290/n4388791/c5976311/content.html. |
[Ministry of Industry and Information Technology. Guiding opinions on promoting and regulating the development of civil UAV manufacturing. 2017-12-22 [2020-10-01]. http://www.miit.gov.cn/n1146290/n4388791/c5976311/content.html. ] | |
[3] | 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1):6-34. |
[ Quan Quan, Li Gang, Bai Yiqin, et al. Low altitude UAV traffic management: An introductory overview and proposal. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):6-34. ] | |
[4] | 吴红军, 行鸿彦, 张金玉. 低空飞行安全气象保障技术[J]. 电子测量技术, 2018, 41(9):10-15. |
[ Wu Hongjun, Xing Hongyan, Zhang Jinyu. Low-altitude flight safety weather protection technology. Electronic Measurement Technology, 2018, 41(9):10-15. ] | |
[5] |
徐晨晨, 叶虎平, 岳焕印, 等. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5):917-930.
doi: 10.11821/dlxb202005003 |
[ Xu Chenchen, Ye Huping, Yue Huanyin, et al. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap. Acta Geographica Sinica, 2020, 75(5):917-930. ] | |
[6] | 张启瑞, 魏瑞轩, 何仁珂, 等. 城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10):1407-1413. |
[ Zhang Qirui, Wei Ruixuan, He Renke, et al. Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles. Control Theory & Applications, 2015, 32(10):1407-1413. ] | |
[7] | 张华, 李晶. 浅析低空飞行安全气象保障技术[J]. 科技风, 2020(15):8. |
[ Zhang Hua, Li Jing. Analysis on the safe weather guarantee technology for low-altitude flight. Technology Wind, 2020(15):8. ] | |
[8] | 陈婷, 杨泓, 李亚玲. 气象要素对多旋翼无人机飞行的影[J]. 中国设备工程, 2018(1):170-171. |
[ Chen Ting, Yang Hong, Li Yaling. The influence of meteorological elements on the flight of multi-rotor UAV. China Plant Engineering, 2018(1):170-171. ] | |
[9] | 黄冠. 低空风切变的形成过程以及影响飞行安全的因素[J]. 科技展望, 2015, 25(15):150. |
[ Huang Guan. The formation process of low-level wind shear and factors affecting flight safety. Science and Technology, 2015, 25(15):150. ] | |
[10] | 丁立平. 低空风切变对飞行的影响及应对措施[J]. 指挥信息系统与技术, 2010, 1(1):77-81. |
[ Ding Liping. Effects of low-level wind shear on flight and its counter-measures. Command Information System and Technology, 2010, 1(1):77-81. ] | |
[11] | 俞飞, 姬鸿丽. 低空风切变的分析与预报[J]. 四川气象, 2001, 21(3):18-19. |
[ Yu Fei, Ji Hongli. Primary discussion on the low-level wind shear. Journal of Sichuan Meteorology, 2001, 21(3):18-19. ] | |
[12] | 赵金霞, 曲平, 何志强, 等. 渤海湾大风的特征及其预报[J]. 气象科技, 2014, 42(5):847-851. |
[ Zhao Jinxia, Qu Ping, He Zhiqiang, et al. Characteristics and forecasting of strong wind gusts in Bohai Bay. Meteorological Science and Technology, 2014, 42(5):847-851. ] | |
[13] | 窦芳丽, 商建, 吴琼, 等. 风云三号卫星被动微波反演海洋上空云液态水含量[J]. 遥感学报, 2020, 24(6):766-775. |
[ Dou Fangli, Shang Jian, Wu Qiong, et al. Retrieval of cloud liquid water content over global oceans using FY-3C/3D microwave imager. Journal of Remote Sensing, 2020, 24(6):766-775. ] | |
[14] |
Cai Y, Wen Y Q. Ship route design for avoiding heavy weather and sea conditions[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2014, 8(4):551-556.
doi: 10.12716/1001 |
[15] | Passner J E, Knapp D I. Using WRF-ARW data to forecast turbulence at small scales[C]// Procedding of 13th conference on aviation, range and aerospace meteorology. New Orleans, USA: American Meteorological Society, 2008. |
[16] |
Chen C, Shiotani S, Sasa K J. Numerical ship navigation based on weather and ocean simulation[J]. Ocean Engineering, 2013, 69(9):44-53.
doi: 10.1016/j.oceaneng.2013.05.019 |
[17] |
Chen C, Shigeaki S, Kenji S S. Study on a numerical navigation system in the East China Sea[J]. Applied Ocean Research, 2015, 53:257-266.
doi: 10.1016/j.apor.2015.09.006 |
[18] |
Chen C, Sasa K J, Ohsawa T, et al. Comparative study on WRF model simulations from the viewpoint of optimum ship routing[J]. Ocean Engineering, 2020, 207:107379. doi: 10.1016/j.oceaneng.2020.107379.
doi: 10.1016/j.oceaneng.2020.107379 |
[19] |
Lu L F, Sasa K J, Sasaki W, et al. Rough wave simulation and validation using onboard ship motion data in the southern hemisphere to enhance ship weather routing[J]. Ocean Engineering, 2017, 144(1):61-77.
doi: 10.1016/j.oceaneng.2017.08.037 |
[20] |
Zalesny V, Agoshkov V, Aps R, et al. Numerical modeling of marine circulation, pollution assessment and optimal ship routes[J]. Journal of Marine Science and Engineering, 2017, 5(3):27. doi: 10.3390/jmse5030027.
doi: 10.3390/jmse5030027 |
[21] |
Evans J P, Ekström M, Ji F. Evaluating the performance of a WRF physics ensemble over south-east Australia[J]. Climate Dynamics, 2012, 39:1241-1258.
doi: 10.1007/s00382-011-1244-5 |
[22] |
Andras Z G, Rita K, Peter K, et al. Unmanned aerial observation of the planetary boundary layer for model evaluation and weather prediction purposes in support of UAV operation[J]. Optimization Letters, 2010, 4(2):173-183.
doi: 10.1007/s11590-009-0156-3 |
[23] | 首都经济贸易大学课题组. 扎实推进京津冀协同发展 [EB/OL]. 经济日报, 2014-04-01 [2020-10-01]. http://theory.workercn.cn/252/201404/01/140401082610651.shtml. |
[Research Group of Capital University of Economics and Business. Solidly promote the coordinated development of the Beijing-Tianjin-Hebei Region. Economic Daily, 2014-04-01 [2020-10-01]. http://theory.workercn.cn/252/201404/01/140401082610651.shtml.] | |
[24] |
徐晨晨, 廖小罕, 岳焕印, 等. 基于改进蚁群算法的无人机低空公共航路构建方法[J]. 地球信息科学学报, 2019, 21(4):570-579.
doi: 10.12082/dqxxkx.2019.180392 |
[ Xu Chenchen, Liao Xiaohan, Yue Huanyin, et al. Construction of a UAV low-altitude public air route based on an improved ant colony algorithm. Journal of Geo-information Science, 2019, 21(4):570-579. ] | |
[25] | 廖小罕, 徐晨晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究[J]. 无人机, 2018(2):45-49. |
[ Liao Xiaohan, Xu Chenchen, Yue Huanyin. Research on UAV low-altitude public air route planning based on geographic information. Unmanned Vehicles, 2018(2):45-49. ] | |
[26] |
Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of climate and Applied Meteorology, 1983, 22:1065-1092.
doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 |
[27] |
Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102:16663-16682.
doi: 10.1029/97JD00237 |
[28] |
Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46:3077-3107.
doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 |
[29] |
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part Ⅰ: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129:569-585.
doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 |
[30] |
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part Ⅱ: Preliminary model validation[J]. Monthly Weather Review, 2001, 129:587-604.
doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2 |
[31] |
Janjić Z I. The step-mountain coordinate: Physical package[J]. Monthly Weather Review, 1990, 118:1429-1443.
doi: 10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2 |
[32] | Janjić Z I. The surface layer in the NCEP Eta model[C]// Proceedings of eleventh conference on numerical weather prediction. Norfolk, USA: American Meteorological Society, 1996: 354-355. |
[33] | Janjić Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model[R]. NCEP Office Note No. 437. College Park, USA: National Centers for Environmental Prediction, 2002. |
[34] | Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme[M]// Emanuel K A, Raymond D J. The representation of cumulus convection in numerical models. Boston, USA: American Meteorological Society, 1993: 165-170. |
[35] | 李正强, 文元桥, 吴力川. 北太平洋大洋航路的风场气候变化特征[J]. 航海技术, 2014(2):21-24. |
[ Li Zhengqiang, Wen Yuanqiao, Wu Lichuan. Characteristics of wind filed climate change in the North Pacific Ocean route. Marine Technology, 2014(2):21-24. ] | |
[36] | 曾智. 我国低空飞行气象服务需求分析与思考[J]. 科研, 2016(7):279. |
[ Zeng Zhi. Analysis and thinking of China's low-altitude flight meteorological service demand. Research, 2016(7):279. ] | |
[37] |
Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525:47-55.
doi: 10.1038/nature14956 |
[38] |
廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5):709-715.
doi: 10.18306/dlkxjz.2020.05.001 |
[ Liao Xiaohan. Advance of geographic sciences and new technology applications. Progress in Geography, 2020, 39(5):709-715. ] |
|