PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1488-1502.doi: 10.18306/dlkxjz.2021.09.005
• New Technology in UAV • Previous Articles Next Articles
WANG Maolin1,2(), LV Renli1,2, GUAN Xiangmin1,2
Received:
2021-02-05
Revised:
2021-05-18
Online:
2021-09-28
Published:
2021-09-28
Supported by:
WANG Maolin, LV Renli, GUAN Xiangmin. An overview of flight demonstration of NASA unmanned aircraft system traffic management system[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1488-1502.
Tab.1
Flight demonstration characteristics
特征 | 描述 | 场景编号 |
---|---|---|
运行密度 | 在特定空域的无人机数量 | 1、2、3、4、5 |
运行速度 | 在指定区域内的无人机起飞和降落次数 | 1、4、5 |
运行空间类别 | 基于区域的运行空间或基于交通的运行空间 | 1、2、3、4、5 |
空域类别 | 管制/非管制空域 | 1、2、3 |
地面障碍 | 建筑物附近的运行 | 1、4 |
障碍物类别 | 动态或静态障碍物附近的运行 | 4、5 |
自动起飞/降落 | 无人机起飞或降落点(同地区或远程) | 1、3、4、5 |
飞行配置 | 飞行任务分类,如线性检查和区域检查 | 1、2、3、4、5 |
起飞/着陆配置 | UAS在地面或屋顶起飞或降落 | 1、4 |
USS协商 | USS请求修改由其他USS管理的运行 | 1、2、3、5 |
运行优先级 | 受导航能力限制的运行(飞行中的紧急情况)或对优先任务作出响应(公共安全) | 2、3、4 |
无人机远程ID | 无人机通过/不通过USS网络,由地面/空中实体进行识别 | 2、3、4 |
Tab.2
Flight demonstration events
类别 | 描述 | 场景编号 |
---|---|---|
无人机空间保留 | 限制某些特定无人机进入的空域 | 1、2 |
冲突 | 无人机进入有人机、障碍物或其他无人机的限定范围内 | 1、2、3、4、5 |
安全着陆 | 在运行空间内/外着陆、具有可运行/不可运行安全着陆能力 | 1、2、3、4 |
USS影响 | 一个USS中断(停止提供服务)、或者一个运行更改为另一个USS | 5 |
意外的无人机行为 | 无人机发生飞行事故或飞行方式粗鲁 | 4 |
C2(命令与控制)链路中断 | 基于空中运行量、C2链路小范围或大范围中断 | 2、3、4、5 |
导航中断 | 基于空中运行量、导航小范围或大范围中断 | 2、3、4、5 |
无人机远程ID查询 | 通过/不通过USS识别无人机 | 2、3、4 |
Tab.3
Test of redundant C2 system
试验区/无人机类型 | C2系统#1 | C2系统#2 | 备注 |
---|---|---|---|
阿拉斯加/四旋翼 | 902~928 MHz之间的无线电通信 | 902~928 MHz之间的 无线电通信 | 每套无线电都连接到一个独立的地面站,当C2#1失效时自动切换到C2#2 |
阿拉斯加/四旋翼 | LTE蜂窝网络 | 902~928 MHz之间的 无线电通信 | C2#1作为主通信,当C2#1失效时自动切换到C2#2 |
内华达/固定翼 | 2200~2500 MHz之间的无线电通信 | 2405~1470 MHz之间的 无线电通信 | 无人机运营人手动切换 |
纽约/八旋翼 | 5875 MHz中心频率的Wi-Fi,20 MHz带宽 | LTE蜂窝网络 | C2#1作为主通信,当C2#1失效时自动切换到C2#2 |
北达科达/直升机 | 中心频率为757.5 MHz的无线电通信,以90 kHz波形运行 | 中心频率为757.5 MHz的无线电通信,以90 kHz波形运行 | 2套链路都传输所有的数据,并过滤掉重复的数据,自动合并到一个单一的接收流 |
北达科达/固定翼 | 902~928 MHz之间的无线电通信 | 1616~1626.5 MHz范围内的卫星通信 | C2#1作为主通信,当C2#1失效时自动切换到C2#2 |
北达科达/六旋翼 | 2个中心频率为915 MHz的无线电通信,分别设置为高低发射功率 | 2套不同移动服务运营商的LTE移动通信 | 自动切换到质量更高的通信链路 |
Tab.7
Requirements of communications and navigation contingencies
异常类型 | 应急要求 | 理由 |
---|---|---|
OSM001 | 运营人必须具备探测无人机和运营人之间通信中断的方法 | UTM系统可以使得运营人在约束条件和指令随时间变化的情况下执行任务,因此运营人必须知道是否可以与无人机进行通信 |
OSM002 | 运营人应该采取措施获取USS已知的无人机通信中断 | USS从补充数据服务提供商获得所需的数据,当探测通信中断的方法已知时,应该能够为任务提供通信质量服务信息,进而减少在执行任务时发生通信中断的概率 |
OSM003 | 运营人必须确定缓解无人机通信中断的步骤 | 运营人必须与无人机通信以遵守约束和指令,并且适应任务中的变化,因此必须采取缓解措施以安全地解决通信中断问题 |
OSM004 | 运营人应该采取措施缓解USS已知的无人机通信中断 | USS接收其他运营人和其他USS的信息,应该能够支持缓解措施,从而对其服务下的总体运行影响降至最小 |
OSM005 | 运营人必须有探测机载导航中断的方法 | UTM系统是为运营人在约束条件和指令下执行任务而建立的,因此,运营人必须了解无人机是否保持必要的导航精度和完整性来保持约束和指令 |
OSM006 | 运营人应该采取措施探测到USS已知的无人机机载导航中断 | USS从补充数据服务提供商获得所需的数据,应该能够在已知探测机载导航中断的方法时,为任务提供通信质量服务预测信息,从而将降低在任务中发生导航中断的概率 |
OSM007 | 运营人必须采取措施缓解无人机机载导航中断 | 为了遵守约束和跟踪指令,无人机必须保持导航性能的准确性和完整性,因此,必须采取缓解措施安全解决导航中断的问题 |
OSM008 | 运营人应该采取措施缓解USS已知的无人机机载导航中断 | USS接收其他运营人和其他USS的信息,应该能够支持相应的缓解措施,从而将其服务范围内的整体业务影响降至最低 |
OSM009 | 运营人必须收集异常情况数据 | 当UTM运行遇到异常情况时,必须收集数据以总结经验教训,提高运行符合性和安全性 |
[1] | Federal Aviation Administration. Public law 112-95, title III, subtitle B: Unmanned aircraft systems[EB/OL]. 2012-02-14 [2020-12-05]. https://www.faa.gov/uas/resources/policy_library/media/Sec_331_336_UAS.pdf. |
[2] | EASA. Concept of operations for drones, a risk based approach to regulation of unmanned aircraft[EB/OL]. 2015-05-01 [2020-12-05]. https://www.easa.europa.eu/sites/default/files/dfu/204696_EASA_concept_drone_brochure_web.pdf. |
[3] | 中国民用航空局飞行标准司. 轻小无人机运行规定(试行) [EB/OL]. 2015-12-29 [2020-12-14]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201601/P020170527591647559640.pdf. |
[Civil Aviation Administration of China. Regulations on operation of light and small UAV (test). 2015-12-29 [2020-12-14]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201601/P020170527591647559640.pdf.] | |
[4] | Balaban M A, Mastaglio T W, Lynch C J. Analysis of future UAS-based delivery[C]// 2016 Winter simulation conference (WSC). Washington D C, USA: IEEE, 2016: 1595-1606. |
[5] |
Tian Y L, Liu K, Ok K, et al. Search and rescue under the forest canopy using multiple UAVs[J]. The International Journal of Robotics Research, 2020, 39(10/11):1201-1221.
doi: 10.1177/0278364920929398 |
[6] |
Ruzgienė B, Berteška T, Gečyte S, et al. The surface modelling based on UAV Photogrammetry and qualitative estimation[J]. Measurement, 2015, 73:619-627.
doi: 10.1016/j.measurement.2015.04.018 |
[7] |
廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5):709-715.
doi: 10.18306/dlkxjz.2020.05.001 |
[ Liao Xiaohan. Advance of geographic sciences and new technology applications. Progress in Geography, 2020, 39(5):709-715. ] | |
[8] | Price H. Fact sheet: The Federal Aviation Administration (FAA) aerospace forecast Fiscal Years (FY) 2019-2039[EB/OL]. 2019-04-30 [2020-12-20]. https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=23575. |
[9] | SESAR. European drones outlook study[EB/OL]. 2017-04-21 [2020-12-20]. https://op.europa.eu/en/publication-detail/-/publication/93d90664-28b3-11e7-ab65-01aa75ed71a1/language-en/format-PDF/source-38537167#. |
[10] | Prevot T, Rios J, Kopardekar P, et al. UAS traffic management (UTM) concept of operations to safely enable low altitude flight operations[C]// 16th AIAA aviation technology, integration, and operations conference. AIAA 2016-3292. Washington D C, USA: AIAA, 2016. |
[11] | Aweiss A, Homola J, Rios J, et al. Flight demonstration of unmanned aircraft system (UAS) traffic management (UTM) at technical capability level 3[C]// 2019 IEEE/AIAA 38th digital avionics systems conference (DASC). San Diego, USA: IEEE, 2019: 1-7. |
[12] | Kopardekar P, Rios J, Prevot T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[R]. Washington D C, USA: Federal Aviation Administration, 2020. |
[13] |
Alarcón V, García M, Alarcón F, et al. Procedures for the integration of drones into the airspace based on U-space services[J]. Aerospace, 2020, 7(9):128. doi: 10.3390/aerospace7090128.
doi: 10.3390/aerospace7090128 |
[14] | SESAR. U-space blueprint[EB/OL]. 2017-06-09 [2020-12-23]. https://www.sesarju.eu/u-space-blueprint. |
[15] | 刘菲, 吕人力. 民用无人机运行管理立法分析与建议[J]. 科技导报, 2020, 38(16):15-28. |
[ Liu Fei, Lv Renli. The legislation for unmanned aircraft operation and suggestions for improvement. Science & Technology Review, 2020, 38(16):15-28. ] | |
[16] |
Guan X M, Lyu R L, Shi H X, et al. A survey of safety separation management and collision avoidance approaches of civil UAS operating in integration national airspace system[J]. Chinese Journal of Aeronautics, 2020, 33(11):2851-2863.
doi: 10.1016/j.cja.2020.05.009 |
[17] | Homola J, Dao Q A, Martin L, et al. Technical capability level 2 unmanned aircraft system traffic management (UTM) flight demonstration: Description and analysis[C]// 2017 IEEE/AIAA 36th digital avionics systems conference (DASC). St. Petersburg, Russia: IEEE, 2017: 1-10. |
[18] | Johnson M, Jung J, Rios J, et al. Flight test evaluation of a traffic management concept for unmanned aircraft systems in a rural environment[C]// Twelfth USA/Europe air traffic management research and development seminar (ATM2017). Seattle, USA, 2017. |
[19] | Rios J L, Martin L, Mercer J. Use of UAS reports (UREPs) during TCL3 field testing[R]. NASA/TM-2019-220336. Moffett Field, USA, 2019. |
[20] | Rios J, Smith D, Smith I. UAS reports (UREPs): Enabling exchange of observation data between UAS operations[R]. NASA/TM-2017-219462. Hampton, USA, 2017. |
[21] | Kerczewski R J, Apaza R D, Downey A N, et al. Assessing C2 communications for UAS traffic management[C]// 2018 Integrated communications, navigation, surveillance conference (ICNS). Herndon, USA: IEEE, 2018. |
[22] | Moore A, Balachandran S, Young S D, et al. Testing enabling technologies for safe UAS urban operations[C]// 2018 Aviation technology, integration, and operations conference. AIAA 2018-3200. Reston, USA: AIAA, 2018. |
[23] | Chakrabarty A, Ippolito C A, Baculi J, et al. Vehicle to Vehicle (V2V) communication for collision avoidance for multi-copters flying in UTM-TCL4[C]// AIAA scitech 2019 forum. AIAA 2019-0690. Reston, USA: AIAA, 2019. |
[24] | Ippolito C, Pai G J, Denney E W. An autonomous autopilot control system design for small-scale uavs[R]. NASA technical report, ARC-E-DAA-TN4888. Moffett Field, USA, 2012. |
[25] | Jung J, Nag S, Modi H C. Effectiveness of redundant communications systems in maintaining operational control of small unmanned aircraft[C]// 2019 IEEE/AIAA 38th digital avionics systems conference (DASC). San Diego, USA: IEEE, 2019: 1-7. |
[26] | Federal Aviation Administration. Part 107-small unmanned aircraft system[EB/OL]. 2016-06-28 [2021-01-04]. https://www.ecfr.gov/cgi-bin/text-idx?SID=134a6a84e849d78e5722100ee018a452&mc=true&node=pt14.2.107&rgn=div5. |
[27] | Huerta M. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap[EB/OL]. 2018-07-30 [2021-01-04]. https://www.faa.gov/uas/resources/policylibrary/media/SecondEditionIntegrationofCivilUASNASRoadmapJuly%202018.pdf. |
[28] | 吕洋, 康童娜, 潘泉, 等. 无人机感知与规避: 概念、技术与系统[J]. 中国科学(信息科学), 2019, 49(5):520-537. |
[ Lv Yang, Kang Tongna, Pan Quan, et al. UAV sense and avoidance: Concepts, technologies, and systems. Scientia Sinica (Informationis), 2019, 49(5):520-537. ] | |
[29] | Glaab L J, Dolph C V, Young S D, et al. Small Unmanned Aerial System (UAS) flight testing of enabling vehicle technologies for the UAS traffic management project[R]. NASA/TM-2018-219816. Washington D C, USA: NASA, 2018. |
[30] |
Accardo D, Fasano G, Forlenza L, et al. Flight test of a radar-based tracking system for UAS sense and avoid[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):1139-1160.
doi: 10.1109/TAES.2013.6494404 |
[31] | Moore A J, Schubert M, Rymer N, et al. UAV inspection of electrical transmission infrastructure with path conformance autonomy and Lidar-based Geofences NASA report on UTM reference mission flights at southern company flights november 2016[R]. NASA Technical Memo 2017-219673. Hampton, USA, 2017. |
[32] | Ramana M V, Varma S A, Kothari M. Motion planning for a fixed-wing UAV in urban environments[J]. IFAC-PapersOnLine, 2016, 49(1):419-424. |
[33] | Primatesta S, Guglieri G, Rizzo A. A risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):629-643. |
[34] | Chakrabarty A, Stepanyan V, Krishnakumar K S, et al. Real-time path planning for multi-copters flying in UTM-TCL4[C]// AIAA scitech 2019 forum. AIAA 2019-0958. Reston, USA: AIAA, 2019. |
[35] | Xue M, Wei M. Small UAV flight planning in urban environments[C]// AIAA aviation 2020 forum. AIAA 2020-2890. Reston, USA: AIAA, 2020. |
[36] | Baculi J E, Ippolito C A. Onboard decision-making for nominal and contingency sUAS Flight[C]// AIAA scitech 2019 forum. AIAA 2019-1457. Reston, USA: AIAA, 2019. |
[37] | Guterres M, Jones S, Orrell G, et al. ADS-B surveillance system performance with small UAS at low altitudes[M]// AIAA Information Systems-AIAA Infotech@Aerospace. AIAA 2017-1154. Reston, USA: AIAA, 2017. |
[38] | Rymer N, Moore A, Young S, et al. Demonstration of two extended visual line of sight methods for urban UAV operations[C]// AIAA aviation 2020 forum. AIAA 2020-2889. Reston, USA: AIAA, 2020. |
[39] | Jang D S, Ippolito C A, Sankararaman S, et al. Concepts of airspace structures and system analysis for uas traffic flows for urban areas[M]// AIAA Information Systems-AIAA Infotech@Aerospace. AIAA 2017-0449. Reston, USA: AIAA, 2017. |
[40] | Jung J, Nag S. Automated management of small unmanned aircraft system communications and navigation contingency[C]// AIAA scitech 2020 forum. AIAA 2020-2195. Reston, USA: AIAA, 2020. |
[41] | Glaab L J, et al. Safe2Ditch autonomous crash management system for small unmanned aerial systems: Concept definition and flight test results[R]. NASA TM-2018-220110. Hampton, USA, 2018. |
No related articles found! |
|