PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (6): 1048-1059.doi: 10.18306/dlkxjz.2021.06.014
• Reviews • Previous Articles Next Articles
HUANG Huabing1,2,3(), WANG Xianwei1,2,3, LIU Lin4,5
Received:
2020-09-07
Revised:
2020-12-10
Online:
2021-06-28
Published:
2021-08-28
Supported by:
HUANG Huabing, WANG Xianwei, LIU Lin. A review on urban pluvial floods: Characteristics, mechanisms, data, and research methods[J].PROGRESS IN GEOGRAPHY, 2021, 40(6): 1048-1059.
[1] | 李超超, 程晓陶, 申若竹, 等. 城市化背景下洪涝灾害新特点及其形成机理[J]. 灾害学, 2019,34(2):57-62. |
[ Li Chaochao, Cheng Xiaotao, Shen Ruozhu, et al. New characteristics and formation mechanism of flood and waterlogging disasters in the context of rapid urbanization. Journal of Catastrophology, 2019,34(2):57-62. ] | |
[2] | 朱思诚, 任希岩. 关于城市内涝问题的思考[J]. 行政管理改革, 2011(11):62-66. |
[ Zhu Sicheng, Ren Xiyan. The thinking on urban floods. Administration Reform, 2011(11):62-66. ] | |
[3] | 刁颋, 刘晓斐. 济南市主城区“7·18暴雨”灾害的启示[J]. 城市与减灾, 2008(2):16-18. |
[ Diao Ting, Liu Xiaofei. Enlightenment from July 18 rainstorm disaster in Jinan City. City and Disaster Reduction, 2008(2):16-18. ] | |
[4] | 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016,27(4):485-491. |
[ Zhang Jian-yun, Wang Yintang, He Ruimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China. Advances in Water Science, 2016,27(4):485-491. ] | |
[5] | 徐宗学, 陈浩, 任梅芳, 等. 中国城市洪涝致灾机理与风险评估研究进展[J]. 水科学进展, 2020,31(5):713-724. |
[ Xu Zongxue, Chen Hao, Ren Meifang, et al. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China. Advances in Water Science, 2020,31(5):713-724. ] | |
[6] | 李天研. 特大暴雨打破多个历史纪录[N/OL]. 广州日报, 2020-05-23 [2020-07-01]. https://gzdaily.dayoo.com/pc/html/2020-05/23/content_130471_700281.htm. |
[ Li Tianyan. The downpour storm on May 22 broke records in Guangzhou, China. Guangzhou Daily, 2020-05-23 [2020-07-01]. https://gzdaily.dayoo.com/pc/html/2020-05/23/content_130471_700281.htm. ] | |
[7] | 郑少玲, 付怡. 广东刷新两项“龙舟水”雨强纪录 [EB/OL]. 2020-05-23 [2020-07-01]. http://news.ycwb.com/2020-05/23/content_830712.htm. |
[ Zheng Shaoling, Fu Yi. Two new records in terms of rainfall intensity emerged in Guangdong, China. 2020-05-23 [2020-07-01]. http://news.ycwb.com/2020-05/23/content_830712.htm. ] | |
[8] | 徐振天, 穗铁宣. 明天起, 广州地铁十三号线全线恢复运营 [EB/OL]. 2020-06-12 [2020-07-01]. http://news.ycwb.com/2020-06/12/content_884943.htm. |
[ Xu Zhentian, Sui Tiexuan. Guangzhou Metro Line 13 is going to resume normal operations tomorrow. 2020-06-12 [2020-07-01]. http://news.ycwb.com/2020-06/12/content_884943.htm. ] | |
[9] | 张冬冬, 严登华, 王义成, 等. 城市内涝灾害风险评估及综合应对研究进展[J]. 灾害学, 2014,29(1):144-149. |
[ Zhang Dongdong, Yan Denghua, Wang Yicheng, et al. Research progress on risk assessment and integrated strategies for urban pluvial flooding. Journal of Catastrophology, 2014,29(1):144-149. ] | |
[10] |
李彬烨, 赵耀龙, 付迎春. 广州城市暴雨内涝时空演变及建设用地扩张的影响[J]. 地球信息科学学报, 2015,17(4):445-450.
doi: 10.3724/SP.J.1047.2015.00445 |
[ Li Binye, Zhao Yaolong, Fu Yingchun. Spatio-temporal characteristics of urban storm waterlogging in Guangzhou and the impact of urban growth. Journal of Geo-information Science, 2015,17(4):445-450. ] | |
[11] |
Huang H B, Chen X, Zhu Z Q, et al. The changing pattern of urban flooding in Guangzhou, China[J]. Science of the Total Environment, 2018,622/623:394-401.
doi: 10.1016/j.scitotenv.2017.11.358 |
[12] | 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战: II 城市雨洪模拟与管理[J]. 水科学进展, 2014,25(5):752-764. |
[ Song Xiaomeng, Zhang Jianyun, Wang Guoqing, et al. Development and challenges of urban hydrology in a changing environment: II Urban stormwater modeling and management. Advances in Water Science, 2014,25(5):752-764. ] | |
[13] | Winters B A, Angel J, Ballerine C, et al. Report for the urban flooding awareness act[R/OL]. https://www.dnr.illinois.gov/WaterResources/Documents/Final_UFAA_Report.pdf. Champaign, USA: Illinois Department of Natural Resources, USA, 2015. |
[14] | 程晓陶, 李超超. 城市洪涝风险的演变趋向、重要特征与应对方略[J]. 中国防汛抗旱, 2015,25(3):6-9. |
[ Cheng Xiaotao, Li Chaochao. The evolution trend, key features and countermeasures of urban flood risk. China Flood & Drought Management, 2015,25(3):6-9. ] | |
[15] |
Berndtsson R, Becker P, Persson A, et al. Drivers of changing urban flood risk: A framework for action[J]. Journal of Environmental Management, 2019,240:47-56.
doi: S0301-4797(19)30397-4 pmid: 30928794 |
[16] |
孙喆. 北京中心城区内涝成因[J]. 地理研究, 2014,33(9):1668-1679.
doi: 10.11821/dlyj201409008 |
[ Sun Zhe. Causal factors of local floods in Beijing Central City. Geographical Research, 2014,33(9):1668-1679. ] | |
[17] | 陈洋波, 覃建明, 董礼明, 等. 广州内涝形成原因与防治对策[J]. 中国防汛抗旱, 2017,27(5):72-76. |
[ Chen Yangbo, Qin Jianming, Dong Liming, et al. The formation regularity and control measures of urban pluvial floods in Guangzhou City. China Flood & Drought Management, 2017,27(5):72-76. ] | |
[18] | 王彬雁, 赵琳娜, 巩远发, 等. 北京降雨过程分型特征及短历时降雨重现期研究[J]. 暴雨灾害, 2015,34(4):302-308. |
[ Wang Binyan, Zhao Linna, Gong Yuanfa, et al. Characteristics of temporal pattern and return period of short-duration rainfall at Beijing Observatory. Torrential Rain and Disasters, 2015,34(4):302-308. ] | |
[19] | 顾问, 谈建国, 常远勇. 1981—2013年上海地区强降水事件特征分析[J]. 气象与环境学报, 2015,31(6):107-114. |
[ Gu Wen, Tan Jianguo, Chang Yuanyong. Characteristics of heavy rainfall events in Shanghai region from 1981 to 2013. Journal of Meteorology and Environment, 2015,31(6):107-114. ] | |
[20] |
Pan C L, Wang X W, Liu L, et al. Improvement to the huff curve for design storms and urban flooding simulations in Guangzhou, China[J]. Water, 2017,9(6):411. doi: 10.3390/w9060411.
doi: 10.3390/w9060411 |
[21] |
Chen Z H, Yin L, Chen X H, et al. Research on the characteristics of urban rainstorm pattern in the humid area of Southern China: A case study of Guangzhou City[J]. International Journal of Climatology, 2015,35(14):4370-4386.
doi: 10.1002/joc.4294 |
[22] | 马雨露, 赖成光, 习树峰, 等. 南方高度城市化地区极端降雨特征分析及阈值确定: 以深圳市为例[J]. 水资源与水工程学报, 2017,28(2):76-81. |
[ Ma Yulu, Lai Chengguang, Xi Shufeng, et al. Analysis and determination of extreme precipitation threshold in highly urbanized areas of Southern China: A case from Shenzhen. Journal of Water Resources and Water Engineering, 2017,28(2):76-81. ] | |
[23] | 孙周亮, 鲍振鑫, 舒章康, 等. 南京市近25年短历时暴雨雨型特性[J]. 水文, 2019,39(5):78-83. |
[ Sun Zhouliang, Bao Zhenxin, Shu Zhangkang, et al. Pattern characteristics of short duration rainstorms in Nanjing City over recent 25 years. Journal of China Hydrology, 2019,39(5):78-83. ] | |
[24] | 毕旭, 程龙, 姚东升, 等. 西安城区暴雨雨型分析[J]. 安徽农业科学, 2015,43(35):295-297, 325. |
[ Bi Xu, Cheng Long, Yao Dongsheng, et al. Analysis on urban rainstorm pattern of Xi'an. Journal of Anhui Agricultural Sciences, 2015,43(35):295-297, 325. ] | |
[25] | 侯精明, 郭凯华, 王志力, 等. 设计暴雨雨型对城市内涝影响数值模拟[J]. 水科学进展, 2017,28(6):820-828. |
[ Hou Jingming, Guo Kaihua, Wang Zhili, et al. Numerical simulation of design storm pattern effects on urban flood inundation. Advances in Water Science, 2017,28(6):820-828. ] | |
[26] | 童旭, 覃光华, 王俊鸿, 等. 基于MIKE URBAN模型研究设计暴雨雨型对城市内涝的影响[J]. 中国农村水利水电, 2019(12):80-85. |
[ Tong Xu, Qin Guanghua, Wang Junhong, et al. The effect of design storm patterns on urban waterlogging based on MIKE URBAN model. China Rural Water and Hydropower, 2019(12):80-85. ] | |
[27] |
Huang H B, Zhang L, Liu L, et al. Assessing the mitigation effect of deep tunnels on urban flooding: A case study in Guangzhou, China[J]. Urban Water Journal, 2019,16(4):312-321.
doi: 10.1080/1573062X.2019.1669186 |
[28] |
Thorndahl S, Nielsen J E, Rasmussen M R. Estimation of storm-centred areal reduction factors from radar rainfall for design in urban hydrology[J]. Water, 2019,11(6):1120. doi: 10.3390/w11061120.
doi: 10.3390/w11061120 |
[29] | 刘成林, 周玉文, 隋军, 等. 城市排水防涝系统降雨空间分布特性研究[J]. 给水排水, 2016,52(1):46-49. |
[ Liu Chenglin, Zhou Yuwen, Sui Jun, et al. The characteristics of rainfall spatial distribution for an urban drainage system. Water & Wastewater Engineering, 2016,52(1):46-49. ] | |
[30] | 陈光照, 侯精明, 张阳维, 等. 西咸新区降雨空间非一致性对内涝过程影响模拟研究[J]. 南水北调与水利科技, 2019,17(4):37-45. |
[ Chen Guangzhao, Hou Jingming, Zhang Yangwei, et al. Effects of rainfall spatial inconsistency on flood inundation processes in the Xixian New Area. South-to-North Water Transfers and Water Science & Technology, 2019,17(4):37-45. ] | |
[31] |
Kim J, Lee J, Kim D, et al. The role of rainfall spatial variability in estimating areal reduction factors[J]. Journal of Hydrology, 2019,568:416-426.
doi: 10.1016/j.jhydrol.2018.11.014 |
[32] |
Svensson C, Jones D A. Review of methods for deriving areal reduction factors[J]. Journal of Flood Risk Management, 2010,3(3):232-245.
doi: 10.1111/jfrm.2010.3.issue-3 |
[33] | 徐光来, 许有鹏, 徐宏亮. 城市化水文效应研究进展[J]. 自然资源学报, 2010,25(12):2171-2178. |
[ Xu Guanglai, Xu Youpeng, Xu Hongliang. Advance in hydrologic process response to urbanization. Journal of Natural Resources, 2010,25(12):2171-2178. ] | |
[34] | 杨柳, 许有鹏, 田亚平, 等. 高度城镇化背景下水系演变及其响应[J]. 水科学进展, 2019,30(2):166-174. |
[ Yang Liu, Xu Youpeng, Tian Yaping, et al. Changes of river system and its response to highly urbanization, China. Advances in Water Science, 2019,30(2):166-174. ] | |
[35] | 胡庆芳, 张建云, 王银堂, 等. 城市化对降水影响的研究综述[J]. 水科学进展, 2018,29(1):138-150. |
[ Hu Qingfang, Zhang Jianyun, Wang Yintang, et al. A review of urbanization impact on precipitation. Advances in Water Science, 2018,29(1):138-150. ] | |
[36] |
刘珍环, 李猷, 彭建. 城市不透水表面的水环境效应研究进展[J]. 地理科学进展, 2011,30(3):275-281.
doi: 10.11820/dlkxjz.2011.03.003 |
[ Liu Zhenhuan, Li You, Peng Jian. Progress and perspective of the research on hydrological effects of urban impervious surface on water environment. Progress in Geography, 2011,30(3):275-281. ] | |
[37] | 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015,55(6):684-690. |
[ Su Boni, Huang Hong, Zhang Nan. Dynamic urban waterlogging risk assessment method based on scenario simulations. Journal of Tsinghua University (Science and Technology), 2015,55(6):684-690. ] | |
[38] |
Aronica G T, Franza F, Bates P D, et al. Probabilistic evaluation of flood hazard in urban areas using Monte Carlo simulation[J]. Hydrological Processes, 2012,26(26):3962-3972.
doi: 10.1002/hyp.v26.26 |
[39] | 中华人民共和国住房和城乡建设部. 城市道路工程设计规范 [S/OL]. 2016-06-28 [2020-07-01]. http://www.mohurd.gov.cn/wjfb/201607/t20160712_228082.html. |
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of urban road engineering. 2016-06-28 [2020-07-01]. http://www.mohurd.gov.cn/wjfb/201607/t20160712_228082.html. ] | |
[40] |
Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin, 1979,24(1):43-69.
doi: 10.1080/02626667909491834 |
[41] |
Rennó C D, Nobre A D, Cuartas L A, et al. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia[J]. Remote Sensing of Environment, 2008,112(9):3469-3481.
doi: 10.1016/j.rse.2008.03.018 |
[42] |
Huang H B, Chen X, Wang X W, et al. A depression-based index to represent topographic control in urban pluvial flooding[J]. Water, 2019,11(10):2115. doi: 0.3390/w11102115.
doi: 10.3390/w11102115 |
[43] |
Qi M, Huang H B, Liu L, et al. Spatial heterogeneity of controlling factors' impact on urban pluvial flooding in Cincinnati, US[J]. Applied Geography, 2020,125:102362. doi: 10.1016/j.apgeog.2020.102362.
doi: 10.1016/j.apgeog.2020.102362 |
[44] |
Chen M W, Chan T O, Wang X W, et al. A risk analysis framework for transmission towers under potential pluvial flood - LiDAR survey and geometric modelling[J]. International Journal of Disaster Risk Reduction, 2020,50:101862. doi: 10.1016/j.ijdrr.2020.101862.
doi: 10.1016/j.ijdrr.2020.101862 |
[45] | 谢宸浩, 黎德波, 张羽, 等. 广州新一代双偏振天气雷达的性能测量和分析[J]. 广西科学院学报, 2019,35(2):124-131. |
[ Xie Chenhao, Li Debo, Zhang Yu, et al. Performance measurement and analysis of new generation dual polarization weather radar in Guangzhou. Journal of Guangxi Academy of Sciences, 2019,35(2):124-131. ] | |
[46] | 黄骏, 胡东明. 广州番禺CINRAD-SA新一代多普勒天气雷达简介[J]. 广东气象, 2002,24(4):35-36. |
[ Huang Jun, Hu Dongming. Brief introduction on CINRAD-SA new generation of Doppler radar in Panyu. Guangdong Meteorology, 2002,24(4):35-36. ] | |
[47] |
Thorndahl S, Einfalt T, Willems P, et al. Weather radar rainfall data in urban hydrology[J]. Hydrology and Earth System Sciences, 2017,21(3):1359-1380.
doi: 10.5194/hess-21-1359-2017 |
[48] |
Berne A, Delrieu G, Creutin J D, et al. Temporal and spatial resolution of rainfall measurements required for urban hydrology[J]. Journal of Hydrology, 2004,299(3/4):166-179.
doi: 10.1016/S0022-1694(04)00363-4 |
[49] |
Wang R Q, Mao H N, Wang Y, et al. Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data[J]. Computers & Geosciences, 2018,111:139-147.
doi: 10.1016/j.cageo.2017.11.008 |
[50] | Liu L, Liu Y, Wang X, et al. Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata[J]. Natural Hazards and Earth System Sciences, 2015,15(3):381-391. |
[51] | 薛丰昌, 宋肖依, 唐步兴, 等. 视频监控的城市内涝监测预警[J]. 测绘科学, 2018,43(8):50-55, 61. |
[ Xue Fengchang, Song Xiaoyi, Tang Buxing, et al. Urban waterlogging monitoring based on urban video image. Science of Surveying and Mapping, 2018,43(8):50-55, 61. ] | |
[52] |
Yang J C, Yu M Z, Qin H, et al. A twitter data credibility framework: Hurricane Harvey as a use case[J]. ISPRS International Journal of Geo-Information, 2019,8(3):111. doi: 10.3390/ijgi8030111.
doi: 10.3390/ijgi8030111 |
[53] |
Zhang G M, Zhu A X. The representativeness and spatial bias of volunteered geographic information: A review[J]. Annals of GIS, 2018,24(3):151-162.
doi: 10.1080/19475683.2018.1501607 |
[54] |
Goodchild M F, Li L N. Assuring the quality of volunteered geographic information[J]. Spatial Statistics, 2012,1:110-120.
doi: 10.1016/j.spasta.2012.03.002 |
[55] | 薄涛, 李小军, 陈苏, 等. 基于社交媒体数据的地震烈度快速评估方法[J]. 地震工程与工程振动, 2018,38(5):206-215. |
[ Bo Tao, Li Xiaojun, Chen Su, et al. Research of seismic intensity rapid assessment based on social media data. Earthquake Engineering and Engineering Dynamics, 2018,38(5):206-215. ] | |
[56] | 李想, 刘纪平, 罗安, 等. 面向微博的灾害类事件地址提取与空间定位方法: 以地震事件为例[J]. 测绘与空间地理信息, 2018,41(4):128-131. |
[ Li Xiang, Liu Jiping, Luo An, et al. Weibo-oriented address extraction and spatial positioning method for disaster events: Take seismic events as an example. Geomatics & Spatial Information Technology, 2018,41(4):128-131. ] | |
[57] | 邬群勇, 裘钰娇. 微博数据位置信息反映台风灾情的有效性分析[J]. 测绘科学技术学报, 2019,36(4):406-411. |
[ Wu Qunyong, Qiu Yujiao. Effectiveness analysis of typhoon disaster reflected by microblog data location information. Journal of Geomatics Science and Technology, 2019,36(4):406-411. ] | |
[58] |
杨腾飞, 解吉波, 李振宇, 等. 微博中蕴含台风灾害损失信息识别和分类方法[J]. 地球信息科学学报, 2018,20(7):906-917.
doi: 10.12082/dqxxkx.2018.180062 |
[ Yang Tengfei, Xie Jibo, Li Zhenyu, et al. A method of typhoon disaster loss identification and classification using micro-blog information. Journal of Geo-information Science, 2018,20(7):906-917. ] | |
[59] |
梁春阳, 林广发, 张明锋, 等. 社交媒体数据对反映台风灾害时空分布的有效性研究[J]. 地球信息科学学报, 2018,20(6):807-816.
doi: 10.12082/dqxxkx.2018.180022. |
[ Liang Chunyang, Lin Guangfa, Zhang Mingfeng, et al. Assessing the effectiveness of social media data in mapping the distribution of typhoon disasters. Journal of Geo-information Science, 2018,20(6):807-816. ] | |
[60] | 张岩, 李英冰, 郑翔. 基于微博数据的台风“山竹”舆情演化时空分析[J]. 山东大学学报(工学版), 2020,50(5):118-126. |
[ Zhang Yan, Li Yingbing, Zheng Xiang. Spatial and temporal analysis of network public opinion evolution of typhoon "Mangkhut" based on Weibo data. Journal of Shandong University (Engineering Science), 2020,50(5):118-126. ] | |
[61] | 相恒茂, 付小康, 高浠舰, 等. 基于社交媒体的城市污染信息探测[J]. 测绘与空间地理信息, 2017,40(8):47-49, 53. |
[ Xiang Hengmao, Fu Xiaokang, Gao Xijian, et al. Urban pollution detection based on social media. Geomatics & Spatial Information Technology, 2017,40(8):47-49, 53. ] | |
[62] | 王艳东, 荆彤, 姜伟, 等. 利用社交媒体数据模拟城市空气质量趋势面[J]. 武汉大学学报(信息科学版), 2017,42(1):14-20. |
[ Wang Yandong, Jing Tong, Jiang Wei, et al. Modeling urban air quality trend surface using social media data. Geomatics and Information Science of Wuhan University, 2017,42(1):14-20. ] | |
[63] |
刘淑涵, 王艳东, 付小康. 利用卷积神经网络提取微博中的暴雨灾害信息[J]. 地球信息科学学报, 2019,21(7):1009-1017.
doi: 10.12082/dqxxkx.2019.180701 |
[ Liu Shuhan, Wang Yandong, Fu Xiaokang. Extracting rainstorm disaster information from microblogs using convolutional neural network. Journal of Geo-information Science, 2019,21(7):1009-1017. ] | |
[64] | 李雪尘, 熊薪. 基于社交平台大数据的暴雨时空分析[J]. 科技创新导报, 2019,16(5):119-121. |
[ Li Xuechen, Xiong Xin. Spatiotemporal analysis of storm events using social media data. Science and Technology Innovation Herald, 2019,16(5):119-121. ] | |
[65] |
Cheng X X, Han G F, Zhao Y F, et al. Evaluating social media response to urban flood disaster: Case study on an East Asian City (Wuhan, China)[J]. Sustainability, 2019,11(19):5330. doi: 10.3390/su11195330.
doi: 10.3390/su11195330 |
[66] | 黎洁仪, 梁之彦, 范绍佳. 基于社交网络的降水灾情检测[J]. 广东气象, 2018,40(5):65-67. |
[ Li Jieyi, Liang Zhiyan, Fan Shaojia. The detection of disasters related to precipitation using social media. Guangdong Meteorology, 2018,40(5):65-67. ] | |
[67] | 吴先华, 肖杨, 王国复, 等. 基于微博大数据的城市内涝灾害的灾情及公众情绪研究: 以南京市为例[J]. 灾害学, 2018,33(3):117-122. |
[ Wu Xianhua, Xiao Yang, Wang Guofu, et al. Research on disaster and public sentiment of urban waterlogging disaster based on microblogging big data: Take Nanjing as an example. Journal of Catastrophology, 2018,33(3):117-122. ] | |
[68] |
Wu Z N, Shen Y X, Wang H L. Assessing urban areas' vulnerability to flood disaster based on text data: A case study in Zhengzhou City[J]. Sustainability, 2019,11(17):4548. doi: 10.3390/su11174548.
doi: 10.3390/su11174548 |
[69] |
Bates P D, de Roo A P J. A simple raster-based model for flood inundation simulation[J]. Journal of Hydrology, 2000,236(1-2):54-77.
doi: 10.1016/S0022-1694(00)00278-X |
[70] |
Yu D, Lane S N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects[J]. Hydrological Processes, 2006,20(7):1541-1565.
doi: 10.1002/(ISSN)1099-1085 |
[71] |
Yu D, Lane S N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: Development of a sub-grid-scale treatment[J]. Hydrological Processes, 2006,20(7):1567-1583.
doi: 10.1002/(ISSN)1099-1085 |
[72] | 马洪涛, 付征垚, 王军. 大型城市排水防涝系统快速评估模型构建方法及其应用[J]. 给水排水, 2014,50(9):39-42. |
[ Ma Hongtao, Fu Zhengyao, Wang Jun. Construction and application of the rapid evaluation model for the large urban flood protection system. Water & Wastewater Engineering, 2014,50(9):39-42. ] | |
[73] | 周倩倩, 王和平, 许苗苗, 等. 基于GIS的栅格水文建模法快速评估内涝风险[J]. 中国给水排水, 2015,31(21):109-113. |
[ Zhou Qianqian, Wang Heping, Xu Miaomiao, et al. A simplified GIS-based hydrological modeling approach for rapid flood risk assessment. China Water & Wastewater, 2015,31(21):109-113. ] | |
[74] |
Zhao G, Xu Z X, Pang B, et al. An enhanced inundation method for urban flood hazard mapping at the large catchment scale[J]. Journal of Hydrology, 2019,571:873-882.
doi: 10.1016/j.jhydrol.2019.02.008 |
[75] |
Zhang S H, Pan B Z. An urban storm-inundation simulation method based on GIS[J]. Journal of Hydrology, 2014,517:260-268.
doi: 10.1016/j.jhydrol.2014.05.044 |
[76] |
Huang H B, Pan Y, Wang X W. A simplified representation of pressure flow from surface slopes in urban sewer systems[J]. Water, 2020,12(10):2778. doi: 10.3390/w12102778.
doi: 10.3390/w12102778 |
[77] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313:504-507.
doi: 10.1126/science.1127647 |
[78] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521:436-444.
doi: 10.1038/nature14539 pmid: 26017442 |
[79] |
Abdellatif M, Atherton W, Alkhaddar R, et al. Flood risk assessment for urban water system in a changing climate using artificial neural network[J]. Natural Hazards, 2015,79(2):1059-1077.
doi: 10.1007/s11069-015-1892-6 |
[80] |
Lin L, Wu Z N, Liang Q H. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework[J]. Natural Hazards, 2019,97(2):455-475.
doi: 10.1007/s11069-019-03615-2 |
[81] |
Tang X Z, Shu Y Q, Lian Y Q, et al. A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes Classifier[J]. Science of the Total Environment, 2018,630:264-274.
doi: 10.1016/j.scitotenv.2018.02.172 |
[82] |
Wu Z N, Zhou Y H, Wang H L, et al. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse[J]. Science of the Total Environment, 2020,716:137077. doi: 10.1016/j.scitotenv.2020.137077.
doi: 10.1016/j.scitotenv.2020.137077 |
[83] |
Zhao G, Pang B, Xu Z X, et al. Assessment of urban flood susceptibility using semi-supervised machine learning model[J]. Science of the Total Environment, 2019,659:940-949.
doi: 10.1016/j.scitotenv.2018.12.217 |
|