PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (6): 1026-1036.doi: 10.18306/dlkxjz.2021.06.012
• Articles • Previous Articles Next Articles
LI Shuangshuang(), ZHANG Yufeng, WANG Chengbo, WANG Ting, YAN Junping
Received:
2020-09-02
Revised:
2021-01-07
Online:
2021-06-28
Published:
2021-08-28
Supported by:
LI Shuangshuang, ZHANG Yufeng, WANG Chengbo, WANG Ting, YAN Junping. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region[J].PROGRESS IN GEOGRAPHY, 2021, 40(6): 1026-1036.
[1] |
Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019,2:122-129.
doi: 10.1038/s41893-019-0220-7 pmid: 30778399 |
[2] |
高江波, 焦珂伟, 吴绍洪. 1982—2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019,74(3):534-543.
doi: 10.11821/dlxb201903010 |
[ Gao Jiangbo, Jiao Kewei, Wu Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013. Acta Geographica Sinica, 2019,74(3):534-543. ] | |
[3] | Felton A J, Zavislan-Pullaro S, Smith M D. Semiarid ecosystem sensitivity to precipitation extremes: Weak evidence for vegetation constraints[J]. Ecology, 2019,100(2):e02572. doi: 10.1002/ecy.2572. |
[4] |
Ding Y B, Xu J T, Wang X W, et al. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels[J]. Science of the Total Environment, 2020,716:137166. doi: 10.1016/j.scitotenv.2020.137166.
doi: 10.1016/j.scitotenv.2020.137166 |
[5] |
Qu S, Wang L C, Lin A W, et al. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China[J]. Ecological Indicators, 2020,108:105724. doi: 10.1016/j.ecolind.2019.105724.
doi: 10.1016/j.ecolind.2019.105724 |
[6] |
Wei P, Xu L, Pan X B, et al. Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China[J]. Catena, 2020,185:104298. doi: 10.1016/j.catena.2019.104298.
doi: 10.1016/j.catena.2019.104298 |
[7] |
Li K W, Tong Z J, Liu X P, et al. Quantitative assessment and driving force analysis of vegetation drought risk to climate change: Methodology and application in Northeast China[J]. Agricultural and Forest Meteorology, 2020,282/283:107865. doi: 10.1016/j.agrformet.2019.107865.
doi: 10.1016/j.agrformet.2019.107865 |
[8] |
金凯, 王飞, 韩剑桥, 等. 1982—2015 年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020,75(5):961-974.
doi: 10.11821/dlxb202005006 |
[ Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020,75(5):961-974. ] | |
[9] |
Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997,386:698-702.
doi: 10.1038/386698a0 |
[10] |
周玉科. 青藏高原植被 NDVI 对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019,38(5):718-730.
doi: 10.18306/dlkxjz.2019.05.009 |
[ Zhou Yuke. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau. Progress in Geography, 2019,38(5):718-730. ] | |
[11] |
Shi Y, Jin N, Ma X L, et al. Attribution of climate and human activities to vegetation change in China using machine learning techniques[J]. Agricultural and Forest Meteorology, 2020,294:108146. doi: 10.1016/j.agrformet. 2020.108146.
doi: 10.1016/j.agrformet.2020.108146 |
[12] |
孙锐, 陈少辉, 苏红波. 2000—2016 年黄土高原不同土地覆盖类型植被NDVI时空变化[J]. 地理科学进展, 2019,38(8):1248-1258.
doi: 10.18306/dlkxjz.2019.08.013 |
[ Sun Rui, Chen Shaohui, Su Hongbo. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016. Progress in Geography, 2019,38(8):1248-1258. ] | |
[13] | 马启民, 贾晓鹏, 王海兵, 等. 气候和人为因素对植被变化影响的评价方法综述[J]. 中国沙漠, 2019,39(6):48-55. |
[ Ma Qimin, Jia Xiaopeng, Wang Haibing, et al. Recent advances in driving mechanisms of climate and anthropogenic factors on vegetation change. Journal of Desert Research, 2019,39(6):48-55. ] | |
[14] |
Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004,57(4):535-554.
doi: 10.1016/S0140-1963(03)00121-6 |
[15] |
Zhou S, Williams A P, Berg A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. PNAS, 2019,116(38):18848-18853.
doi: 10.1073/pnas.1904955116 |
[16] |
Pan N Q, Feng X M, Fu B J, et al. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends[J]. Remote Sensing of Environment, 2018,214:59-72.
doi: 10.1016/j.rse.2018.05.018 |
[17] |
Xu X, Jiang H L, Guan M X, et al. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015[J]. Science of the Total Environment, 2020,744:140784. doi: 10.1016/j.scitotenv.2020.140784.
doi: 10.1016/j.scitotenv.2020.140784 |
[18] | Bassiouni M, Good S P, Still C J, et al. Plant water uptake thresholds inferred from satellite soil moisture[J]. Geophysical Research Letters, 2020,47(7): e2020 GL087077. doi: 10.1029/2020GL087077. |
[19] |
Hirota M, Oliveira R. Crossing thresholds on the way to ecosystem shifts[J]. Science, 2020,367:739-740.
doi: 10.1126/science.aba7115 |
[20] |
Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020,367:787-790.
doi: 10.1126/science.aay5958 |
[21] |
Tian H J, Cao C X, Chen W, et al. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012[J]. Ecological Engineering, 2015,82:276-289.
doi: 10.1016/j.ecoleng.2015.04.098 |
[22] |
李双双, 延军平, 杨赛霓, 等. 1960—2016年秦岭—淮河地区热浪时空变化特征及其影响因素[J]. 地理科学进展, 2018,37(4):504-514.
doi: 10.18306/dlkxjz.2018.04.006 |
[ Li Shuangshuang, Yan Junping, Yang Saini, et al. Spatiotemporal variability of heat waves and influencing factors in the Qinling-Huaihe region, 1960-2016. Progress in Geography, 2018,37(4):504-514. ] | |
[23] |
吴绍洪, 潘韬, 刘燕华, 等. 中国综合气候变化风险区划[J]. 地理学报, 2017,72(1):3-17.
doi: 10.11821/dlxb201701001 |
[ Wu Shaohong, Pan Tao, Liu Yanhua, et al. Comprehensive climate change risk regionalization of China. Acta Geographica Sinica, 2017,72(1):3-17. ] | |
[24] |
黄木易, 岳文泽, 方斌, 等. 1970—2015 年大别山区生态服务价值尺度响应特征及地理探测机制[J]. 地理学报, 2019,74(9):1904-1920.
doi: 10.11821/dlxb201909015 |
[ Huang Muyi, Yue Wenze, Fang Bin, et al. Scale response characteristics and geographic exploration mechanism of spatial differentiation of ecosystem service values in Dabie Mountain area, central China from 1970 to 2015. Acta Geographica Sinica, 2019,74(9):1904-1920. ] | |
[25] | 陈超男, 朱连奇, 田莉, 等. 秦巴山区植被覆盖变化及气候因子驱动分析[J]. 生态学报, 2019,39(9):3257-3266. |
[ Chen Chaonan, Zhu Lianqi, Tian Li, et al. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecologica Sinica, 2019,39(9):3257-3266. ] | |
[26] |
张学珍, 赵彩杉, 董金玮, 等. 1992—2017 年基于荟萃分析的中国耕地撂荒时空特征[J]. 地理学报, 2019,74(3):411-420.
doi: 10.11821/dlxb201903001 |
[ Zhang Xuezhen, Zhao Caishan, Dong Jinwei, et al. Spatio-temporal pattern of cropland abandonment in China from 1992 to 2017: A meta-analysis. Acta Geographica Sinica, 2019,74(3):411-420. ] | |
[27] |
马新萍, 白红英, 贺映娜, 等. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系: 以陕西境内为例[J]. 地理科学, 2015,35(12):1616-1621.
doi: 10.13249/j.cnki.sgs.2015.012.1616 |
[ Ma Xinping, Bai Hongying, He Yingna, et al. The vegetation remote sensing phenology of Qinling Mountains based on NDVI and its response to temperature: Taking within the territory of Shaanxi as an example. Scientia Geographica Sinica, 2015,35(12):1616-1621. ] | |
[28] |
Sen P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968,63:1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[29] |
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers[J]. Nature Climate Change, 2016,6(8):791-795.
doi: 10.1038/nclimate3004 |
[30] | 国家发展改革委, 自然资源部. 全国重要生态系统保护和修复重大工作总体规划(2021—2035年)[S]. 2020. |
[ The State Development and Reform Commission, Natural Resources Ministry. The master plans for multiple national ecological protection and restoration projects in China (2021-2035). 2020. ] | |
[31] |
Wei X H, Li Q, Zhang M F, et al. Vegetation cover: Another dominant factor in determining global water resources in forested regions[J]. Global Change Biology, 2018,24(2):786-795.
doi: 10.1111/gcb.2018.24.issue-2 |
[32] |
Zeng Z Z, Piao S L, Li L Z X, et al. Global terrestrial stilling: Does earth's greening play a role?[J]. Environmental Research Letters, 2018,13(12):124013. doi: 10. 1088/1748-9326/aaea84.
doi: 10.1088/1748-9326/aaea84 |
[33] |
史培军, 宋长青, 程昌秀. 地理协同论: 从理解“人—地关系”到设计“人—地协同”[J]. 地理学报, 2019,74(1):3-15.
doi: 10.11821/dlxb201901001 |
[ Shi Peijun, Song Changqing, Cheng Changxiu. Geographical synergetics: From understanding human-environment relationship to designing human-environment synergy. Acta Geographica Sinica, 2019,74(1):3-15. ] |
[1] | WEN Zhihong, DENG Guorong, ZHAO Jianjun, ZHANG Hongyan, GUO Xiaoyi. Response of velocity of vegetation greenup to frost in the Greater Khingan Mountains [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 839-847. |
[2] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[3] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[4] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[5] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[6] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[7] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[8] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[9] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[10] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[11] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[12] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[13] | Lingbo XIAO. Spatiotemporal distribution of high flood risk areas in China, 1736-1911 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 495-503. |
[14] | Shuangshuang LI, Junping YAN, Saini YANG, Shushan HU, Yi ZHAO. Spatiotemporal variability of heat waves and influencing factors in the Qinling-Huaihe region, 1960-2016 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 504-514. |
[15] | Bojie FU. Thoughts on the recent development of physical geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 1-7. |
|