PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (4): 703-712.doi: 10.18306/dlkxjz.2021.04.014
• Articles • Previous Articles Next Articles
ZHANG Li1(), LI Bin1,2, YANG Wenjing1, LI Qiong3
Received:
2020-03-04
Revised:
2020-10-16
Online:
2021-04-28
Published:
2021-06-28
Supported by:
ZHANG Li, LI Bin, YANG Wenjing, LI Qiong. Forest vegetation classification and its variation in Lushan Nature Reserve using Proba-V vegetation products[J].PROGRESS IN GEOGRAPHY, 2021, 40(4): 703-712.
Tab.1
Accuracy evaluation of classification results for each year"
类别 | 2015年 | 2016年 | 2017年 | 2018年 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | |||||||||||
针叶林 | 0.86 | 0.88 | 0.84 | 0.86 | 0.84 | 0.86 | 0.83 | 0.89 | ||||||||||
混交林 | 0.85 | 0.83 | 0.83 | 0.84 | 0.82 | 0.84 | 0.87 | 0.84 | ||||||||||
阔叶林 | 0.83 | 0.86 | 0.83 | 0.83 | 0.82 | 0.85 | 0.89 | 0.83 | ||||||||||
竹林 | 0.86 | 0.83 | 0.87 | 0.84 | 0.91 | 0.84 | 0.83 | 0.85 | ||||||||||
OA/% | 85.00 | 84.25 | 84.75 | 85.25 | ||||||||||||||
Kappa系数 | 0.80 | 0.79 | 0.81 | 0.80 |
Tab.2
Summary of vegetation mapping products and other vegetation cover products"
土地覆盖产品 | Proba-V | LC-CCI | Globcover | Globeland30 | MODIS |
---|---|---|---|---|---|
空间分辨率/m | 100 | 300 | 300 | 250 | 500 |
数据源 | Proba-V时间 序列数据 | SPOT-VGT时间 序列数据 | MERIS卫星10 d 合成产品 | Landsat TM、ETM+和 HJ-1多光谱图像 | MODIS月EVI、 LST 8 d复合数据 |
产品可获取时间 | 2015—2018年 | 2008—2012年 | 2009年 | 2009—2011年 | 2010年 |
分类方法 | 随机森林分类 | 非监督的时空聚类; 机器学习分类 | 非监督时空聚类; 基于专家经验的标签 | 基于像素和对象的分类;基于知识的交互验证的集成 | 决策树 |
总体分类精度/% | >84 | 74.4 | 70.7 | 83.5 | 74.8 |
Tab.3
Transfer matrix of forestland types in Lushan, 2015-2018 (km2) "
2015年 | 2016年 | ||||
---|---|---|---|---|---|
混交林 | 阔叶林 | 针叶林 | 竹 林 | 变化率/% | |
混交林 | 33.97 | 0.35 | 0.81 | 1.00 | 5.99 |
阔叶林 | 0.11 | 56.88 | 0.38 | 0.33 | 1.41 |
针叶林 | 0.96 | 0.54 | 84.39 | 0.91 | 2.78 |
竹林 | 0.44 | 0.08 | 0.33 | 16.97 | 4.80 |
2016年 | 2017年 | ||||
混交林 | 阔叶林 | 针叶林 | 竹 林 | 变化率/% | |
混交林 | 33.57 | 0.11 | 0.91 | 0.45 | 4.37 |
阔叶林 | 0.32 | 56.53 | 0.44 | 0.14 | 1.59 |
针叶林 | 0.88 | 0.48 | 84.53 | 0.37 | 2.00 |
竹林 | 1.32 | 0.52 | 0.91 | 16.82 | 14.04 |
2017年 | 2018年 | ||||
混交林 | 阔叶林 | 针叶林 | 竹 林 | 变化率/% | |
混交林 | 33.70 | 0.53 | 0.94 | 1.60 | 9.09 |
阔叶林 | 0.04 | 56.31 | 0.20 | 0.59 | 1.48 |
针叶林 | 0.92 | 0.49 | 84.91 | 1.00 | 2.76 |
竹林 | 0.39 | 0.11 | 0.20 | 16.38 | 4.08 |
[1] | 尤慧. 近十年东南亚森林扰动的遥感分析[D]. 南京: 南京信息工程大学, 2013. |
You Hui. Remote sensing analysis of forest disturbance in Southeast Asia for recent decades. Nanjing, China: Nanjing University of Information Science & Technology, 2013. | |
[2] |
Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403:853-858.
doi: 10.1038/35002501 pmid: 10706275 |
[3] | 胡美娟, 侯国林, 周年兴, 等. 庐山森林景观空间分布格局及多尺度特征[J]. 生态学报, 2015, 35(16):5294-5305. |
Hu Meijuan, Hou Guolin, Zhou Nianxing, et al. Spatial distribution patterns and multi-scale features of the Lushan forest landscape. Acta Ecologica Sinica, 2015, 35(16):5294-5305. | |
[4] | 付伟, 徐涵秋, 王美雅, 等. 南方红壤典型水土流失区植被分类及植被类型变化的遥感评估: 以福建省长汀县河田地区为例[J]. 遥感技术与应用, 2017, 32(3):546-555. |
Fu Wei, Xu Hanqiu, Wang Meiya, et al. Vegetation classification and variation assessment in a typical red soil erosion area in Southern China: Hetian, Changting County of Fujian Province. Remote Sensing Technology and Application, 2017, 32(3):546-555. | |
[5] | 刘华, 陈永富, 鞠洪波, 等. 美国森林资源监测技术对我国森林资源一体化监测体系建设的启示[J]. 世界林业研究, 2012, 25(6):64-68. |
Liu Hua, Chen Yongfu, Ju Hongbo, et al. Inspiration of forest resources monitoring in USA for integrated forest resources monitoring system in China. World Forestry Research, 2012, 25(6):64-68. | |
[6] | Jia K, Wei X Q, Gu X F, et al. Land cover classification using Landsat 8 operational land imager data in Beijing, China[J]. Geocarto International, 2014, 29(8):941-951. |
[7] | Poursanidis D, Chrysoulakis N, Mitraka Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35:259-269. |
[8] | Calleja F, Ondiviela B, Galván C, et al. Mapping estuarine vegetation using satellite imagery: The case of the invasive species Baccharis halimifolia at a Natura 2000 site[J]. Continental Shelf Research, 2019, 174:35-47. |
[9] | Petropoulos G P, Kalaitzidis C, Vadrevu K P. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery[J]. Computers & Geosciences, 2012, 41:99-107. |
[10] | Barnetson J, Phinn S, Scarth P. Mapping woody vegetation cover across Australia's arid rangelands: Utilising a machine-learning classification and low-cost Remotely Piloted Aircraft System[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101909. doi: 10.1016/j.jag.2019.101909. |
[11] | Luo S Z, Wang C, Xi X H, et al. Fusion of airborne discrete-return LiDAR and hyperspectral data for land cover classification[J]. Remote Sensing, 2015, 8(1):3. doi: 10.3390/rs8010003. |
[12] | Heiskanen J, Kivinen S. Assessment of multispectral, -temporal and -angular MODIS data for tree cover mapping in the tundra-taiga transition zone[J]. Remote Sensing of Environment, 2008, 112(5):2367-2380. |
[13] | Zhang X, Zhang M, Zheng , et al. Crop mapping using PROBA-V time series data at the Yucheng and Hongxing farm in China[J]. Remote Sensing, 2016, 8(11):915. doi: 10.3390/rs8110915. |
[14] | Thanh Noi P, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery[J]. Sensors (Basel), 2017, 18(1): 18. doi: 10.3390/s18010018. |
[15] | Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. |
[16] | 张赫林, 彭代亮, 邓睿, 等. 基于Landsat时间序列数据的祁连山区域土地利用变化[J]. 北京工业大学学报, 2017, 43(5):665-676. |
Zhang Helin, Peng Dailiang, Deng Rui, et al. Dynamic change of land use in Qilian Mountains based on time-series Landsat image. Journal of Beijing University of Technology, 2017, 43(5):665-676. | |
[17] | 周兴文. 庐山植被研究[J]. 沈阳教育学院学报, 1999(2):111-114. |
Zhou Xingwen. Study on the vegetation of the Lushan in China. Journal of Shenyang College of Education, 1999(2):111-114. | |
[18] | 陈世隆, 王江林, 杨建国. 庐山的植被[J]. 自然杂志, 1980, 2(3):204-208. |
Chen Shilong, Wang Jianglin, Yang Jianguo. Vegetation on Lushan Mountain. Nature Magazine, 1980, 2(3):204-208. | |
[19] | 张金泉. 庐山植被的垂直分带[J]. 华南师院学报(自然科学版), 1982, 14(1):1-14. |
Zhang Jinquan. Division of the vertical vegetation zone in Lushan Mountain. Journal of the South China Normal University (Natural Science Edition), 1982, 14(1):1-14. | |
[20] | 孙燕. 庐山自然保护区主要道路对外来植物影响研究[D]. 北京: 北京林业大学, 2012. |
Sun Yan. Alien plant species in major roadsides and trail sides of Lushan Natural Reserve, Jiangxi Province. Beijing, China: Beijing Forestry University, 2012. | |
[21] | 李杭燕, 颉耀文, 马明国. 时序NDVI数据集重建方法评价与实例研究[J]. 遥感技术与应用, 2009, 24(5):596-602. |
Li Hangyan, Xie Yaowen, Ma Mingguo. Reconstruction of temporal NDVI dataset: Evaluation and case study. Remote Sensing Technology and Application, 2009, 24(5):596-602. | |
[22] | 王丹, 姜小光, 唐伶俐, 等. 利用时间序列傅立叶分析重构无云NDVI图像[J]. 国土资源遥感, 2005, 17(2):29-32. |
Wang Dan, Jiang Xiaoguang, Tang Lingli, et al. The application of time -series Fourier analysis to reconstructing cloud-free ndvi images. Remote Sensing for Land & Resources, 2005, 17(2):29-32. | |
[23] | Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. |
[24] | Biau G E R. Analysis of a random forests model[J]. The Journal of Machine Learning Research, 2012, 13(1):1063-1095. |
[25] | 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326. |
Zhang Lei, Gong Zhaoning, Wang Qiwei, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Journal of Remote Sensing, 2019, 23(2):313-326. | |
[26] | 万慧霖. 庐山森林生态系统植物多样性及其分布格局[D]. 北京: 北京林业大学, 2008. |
Wan Huilin. Plant diversity and its distribution pattern in the forest ecosystem of Lushan Mountain. Beijing, China: Beijing Forestry University, 2008. | |
[27] | Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1):168-182. |
[28] | 樊忠良. 庐山植物区系的特征和植被的分布[J]. 黄冈师专学报, 1994, 14(1):52-55. |
Fan Zhongliang. The features of flora and the distribution of vegetation at Lushan Mountain. Journal of Huanggang Normal University, 1994, 14(1):52-55. | |
[29] | Jenson J Q, Cowen D.. Principles of change detection using digital remote sensor data M// Star J L, Estes J E, McGwire K C. Integration of geographic information systems and remote sensing. Cambridge, UK: Cambridge University Press, 1997:1-25. |
[1] | Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932. |
[2] | Lin LIU, Wenjuan LIU, Weiwei LIAO, Hongjie YU, Chao JIANG, Rongping LIN, Jiakai JI, Zheng ZHANG. Comparison of random forest algorithm and space-time kernel density mapping for crime hotspot prediction [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 761-771. |
[3] | Min TAN, Kai LIU, Lin LIU, Yuanhui ZHU, Dashan WANG. Spatialization of population in the Pearl River Delta in 30 m grids using random forest model [J]. PROGRESS IN GEOGRAPHY, 2017, 36(10): 1304-1312. |
[4] | CHEN Kai, LIU Kai, LIU Lin, ZHU Yuanhui. Urban expansion simulation by random-forest-based cellular automata: a case study of Foshan City [J]. PROGRESS IN GEOGRAPHY, 2015, 34(8): 937-946. |
[5] | LAN Hengxing, ZHOU Chenghu, GAO Xing, CHENG Weiming, WANG Zhihua, YANG Zhihua, LI Langping, WU Yuming. Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya'an Earthquake, Sichuan Province [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 499-504. |
[6] | CHENG Jiangang, WANG Xuefeng, FAN Lizhang, YANG Xiaopeng, YANG Pengwu. Variations of Yunnan Climatic Zones in Recent 50 Years [J]. PROGRESS IN GEOGRAPHY, 2009, 28(1): 18-24. |
|