PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (11): 1898-1908.doi: 10.18306/dlkxjz.2020.11.010
• Articles • Previous Articles Next Articles
Received:
2019-12-12
Revised:
2020-05-02
Online:
2020-11-28
Published:
2021-01-28
Supported by:
ZHAO Liyuan, WEI Jialing. Impact of urban development on the risk of flooding: A case study of Wuhan City, China[J].PROGRESS IN GEOGRAPHY, 2020, 39(11): 1898-1908.
Tab.2
Indicators of urban development and their descriptive statistics"
因素分类 | 解释变量 | 数据统计分析 | 数据量解释 | ||
---|---|---|---|---|---|
取值范围 | 平均值 | 标准差 | |||
地形地势因素 | 高程 ( | [-5, 101] | 27.338 | 7.899 | 栅格实际高程数值 |
邻域内海拔最低 ( | [0, 1] | 0.103 | 0.305 | 若Moore邻域内该栅格海拔最低,值为1; 若Moore邻域内该栅格海拔非最低,值为0 | |
排水管网条件 | 距排水管网距离 ( | [1, 3] | 1.944 | 0.830 | 0≤距离≤30 m,值为3; 30 m<距离≤100 m,值为2; 100 m<距离,值为1 |
地表不透水性 | 各类用地不透水率 ( | [0, 3] | 0.622 | 1.066 | 道路不透水率,值为3; 建设用地不透水率,值为2; 绿地不透水率,值为1; 水域不透水率,值为0 |
土地利用类型 | 栅格用地类型为绿地 | [0, 1] | 0.171 | 0.377 | 栅格为绿地类型,值为1; 栅格不是绿地类型,值为0 |
邻域绿地栅格数 | [1, 8] | 1.360 | 2.704 | Moore邻域中绿地栅格的个数:值为1至8的整数 | |
邻域水体栅格数 | [1, 8] | 0.721 | 2.106 | Moore邻域中水栅格的个数:值为1至8的整数 | |
填湖造陆因素 | 1984—2017年间被填占的水域栅格 | [0, 2] | 0.033 | 0.178 | 未填湖非水域的栅格,值为0; 水域转绿地的栅格,值为1; 水域转城市建设用地的栅格,值为2 |
Tab.3
Logistic regression results for two rainfall scenarios"
解释变量 | 一般情景 (24 h~95 mm) | 极端情景 (24 h~249 mm) | ||||||
---|---|---|---|---|---|---|---|---|
回归系数 | t统计量 | P值 | 回归系数 | t统计量 | P值 | |||
地形地势因素 | 高程 | -0.521 | -2.616 | *** | 1.990 | 22.944 | *** | |
邻域内海拔最低 | 0.188 | 3.924 | *** | 0.086 | 4.500 | *** | ||
排水管网条件 | 距排水管网距离 | -1.378 | -25.268 | *** | -1.385 | -61.811 | *** | |
地表不透水性 | 各类用地不透水性 | 3.112 | 11.299 | *** | 1.380 | 14.697 | *** | |
土地利用类型 | 栅格用地类型为绿地 | -2.224 | -10.984 | *** | -1.104 | -15.798 | *** | |
邻域绿地栅格 | 2.076 | 8.602 | *** | 3.866 | 41.569 | *** | ||
邻域水体栅格数 | 1.865 | 14.908 | *** | 1.233 | 26.057 | *** | ||
填湖造陆因素 | 1984—2017年间被填占的水域栅格 | -0.202 | -2.601 | *** | 0.116 | 5.902 | *** | |
常数项 | 0.683 | 8.177 | *** | 0.212 | 6.184 | *** |
[1] | Louise B, Karin W, Isadora D M T, et al. Urban flood resilience: A multi-criteria index to integrate flood resilience into urban planning[J]. Journal of Hydrology, 2019,573(6):970-982. |
[2] | Gori A, Blessing R, Juan A, et al. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling[J]. Journal of Hydrology, 2019,568(1):82-95. |
[3] | Murali R M, Kumar P K D. Implications of sea level rise scenarios on land use/land cover classes of the coastal zones of Cochin, India[J]. Journal of Environmental Management, 2015,148(1):124-133. |
[4] | Rasanen A, Nygren A, Monge A M, et al. From divide to nexus: Interconnected land use and water governance changes shaping risks related to water[J]. Applied Geography, 2018,90(1):106-114. |
[5] | Brody S D, Gunn J, Peacock W, et al. Examining the influence of development patterns on flood damages along the gulf of Mexico[J]. Journal of Planning Education & Research, 2011,31(4):438-448. |
[6] | Abebe Y A, Ghorbani A, Nikolic I, et al. A coupled flood-agent-institution modelling (CLAIM) framework for urban flood risk management[J]. Environmental Modelling & Software, 2019,111(1):483-492. |
[7] | Lee Y, Brody S D. Examining the impact of land use on flood losses in Seoul, Korea[J]. Land Use Policy, 2018,70(1):500-509. |
[8] | Mileti D S, Gailus J L. Sustainable development and hazards mitigation in the United States: Disasters by design revisited[J]. Mitigation and Adaptation Strategies for Global Change, 2005,10(3):491-504. |
[9] | Diakakis M, Deligiannakis G, Pallikarakis A, et al. Factors controlling the spatial distribution of flash flooding in the complex environment of a metropolitan urban area: The case of Athens 2013 flash flood event[J]. International Journal of Disaster Risk Reduction, 2016,18(9):171-180. |
[10] | Liu J, Shi Z W. Quantifying land-use change impacts on the dynamic evolution of flood vulnerability[J]. Land Use Policy, 2017,65(6):198-210. |
[11] | Perezmolina E, Sliuzas R V, Flacke J, et al. Developing a cellular automata model of urban growth to inform spatial policy for flood mitigation: A case study in Kampala, Uganda[J]. Computers, Environment and Urban Systems, 2017,65(9):53-65. |
[12] | Lennon M, Scott M, O'Neill E. Urban design and adapting to flood risk: The role of green infrastructure[J]. Journal of Urban Design, 2014,19(5):745-758. |
[13] | 吴健生, 张朴华. 城市景观格局对城市内涝的影响研究: 以深圳市为例[J]. 地理学报, 2017,72(3):444-456. |
[ Wu Jiansheng, Zhang Puhua. The effect of urban landscape pattern on urban waterlogging. Acta Geographica Sinica, 2017,72(3):444-456. ] | |
[14] | 彭建, 魏海, 武文欢, 等. 基于土地利用变化情景的城市暴雨洪涝灾害风险评估: 以深圳市茅洲河流域为例[J]. 生态学报, 2018,38(11):3741-3755. |
[ Peng Jian, Wei Hai, Wu Wenhuan, et al. Storm flood disaster risk assessment in urban area based on the simulation of land use scenarios: A case of Maozhou Watershed in Shenzhen City. Acta Ecologica Sinica, 2018,38(11):3741-3755. ] | |
[15] | 王玉鑫, 曾燕, 邱新法, 等. 土地利用变化对城市积涝的影响研究: 以南京市浦口区为例[J]. 气象科学, 2017,37(2):231-238. |
[ Wang Yuxin, Zeng Yan, Qiu Xinfa, et al. Impact of land use change on urban waterlogging: Case of Nanjing Pukou. Journal of the Meteorological Sciences, 2017,37(2):231-238. ] | |
[16] | Kumar D S, Arya D S, Vojinovic Z. Modeling of urban growth dynamics and its impact on surface runoff characteristics[J]. Computers Environment and Urban Systems, 2013,41(1):124-135. |
[17] | Niehoff D, Fritsch U, Bronstert A. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany[J]. Journal of Hydrology, 2002,267(1):80-93. |
[18] | Bazin P, Nakagawa H, Kawaike K, et al. Modeling flow exchanges between a street and an underground drainage pipe during urban floods[J]. Journal of Hydraulic Engineering, 2014,140(10):04014051. doi: 10. 1061/(ASCE)HY. 1943-7900. 0000917. |
[19] |
Djordjević S, Prodanović D, Maksimović C, et al. SIPSON-simulation of interaction between pipe flow and surface overland flow in networks[J]. Water Science & Technology, 2005,52(5):275-283.
pmid: 16248205 |
[20] | Jovanovic T, Mejía A, Gall H, et al. Effect of urbanization on the long-term persistence of streamflow records[J]. Physica A: Statistical Mechanics & Its Applications, 2016,447(4):208-221. |
[21] | Brun S E, Band L E. Simulating runoff behavior in an urbanizing watershed[J]. Computers Environment & Urban Systems, 2000,24(1):5-22. |
[22] |
Weng Q H. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS[J]. Environmental Management, 2001,28(6):737-748.
pmid: 11915963 |
[23] | Israel A O. Nature, the built environment and perennial flooding in Lagos, Nigeria: The 2012 flood as a case study[J]. Urban Climate, 2017,21(9):218-231. |
[24] | Lang Y Q, Song W, Deng X Z. Projected land use changes impacts on water yields in the karst mountain areas of China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2018,104(4):66-75. |
[25] | Sun Z X, Wu F, Shi C C, et al. The impact of land use change on water balance in Zhangye City, China[J]. Physics & Chemistry of the Earth, Parts A/B/C, 2016,96(12):64-73. |
[26] | Xie Linjun, Flynn A, Tan-Mullins M, et al. Water and land: Environmental governance and Chinese eco-development[J]. Journal of Cleaner Production, 2019,221(6):839-853. |
[27] | 李仁东. 土地利用变化对洪水调蓄能力的影响: 以洞庭湖区为例[J]. 地理科学进展, 2010,23(6):90-95, 115-116. |
[ Li Rendong. The impact of the land use change on the floodwater adjustment and storage: A case study on the Dongting Lake area. Progress in Geography, 2010, 23(6):90-95, 115-116. ] | |
[28] | 曾忠平, 彭浩轩. 城市湿地损失和内涝灾害响应的遥感分析: 以武汉市南湖为例[J]. 长江流域资源与环境, 2018,27(4):929-938. |
[ Zeng Zhongping, Peng Haoxuan. Remote sensing analysis of urban wetland loss and waterlogging: A case of Wuhan South Lake. Resources and Environment in the Yangtze Basin, 2018,27(4):929-938. ] | |
[29] | Jiang Y, Zevenbergen C, Ma Y C. Urban pluvial flooding and stormwater management: A contemporary review of China's challenges and "sponge cities" strategy[J]. Environmental Science & Policy, 2018,80(2):132-143. |
[30] | Wen H Z, Bu X Q, Qin Z F, et al. Spatial effect of lake landscape on housing price: A case study of the West Lake in Hangzhou, China[J]. Habitat International, 2014,44:31-40. |
[31] | Yang Y C, Zhang D L, Meng Q M, et al. Stratified evolution of urban residential spatial structure in China through the transitional period: A case study of five categories of housings in Chengdu[J]. Habitat International, 2017,69(7):78-93. |
[32] | Sado-Inamura Y, Fukushi K. Empirical analysis of flood risk perception using historical data in Tokyo[J]. Land Use Policy, 2019,82(3):13-29. |
[33] | Zhao L Y, Peng Z R. LandSys: An agent-based Cellular Automata model of land use change developed for transportation analysis[J]. Journal of Transport Geography, 2012,25(11):35-49. |
[34] | Kroese D P, Brereton T, Taimre T, et al. Why the Monte Carlo method is so important today[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2014,6:386-392. |
[35] | Emilia K. The interaction between road traffic safety and the condition of sewers laid under roads[J]. Transportation Research Part D: Transport & Environment, 2016,48(10):203-213. |
[36] | Zischg J, Rogers B, Gunn A, et al. Future trajectories of urban drainage systems: A simple exploratory modeling approach for assessing socio-technical transitions[J]. Science of the Total Environment, Part 2, 2019,651(2):1709-1719. |
[37] | Leandro J, Schumann A, Pfister A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modeling[J]. Journal of Hydrology, 2016,535(4):356-365. |
|