PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (11): 1798-1808.doi: 10.18306/dlkxjz.2020.11.002
• Articles • Previous Articles Next Articles
CHEN Xiao1,2(), HUANG Yujin2,3, LI Jiahui2,4, WANG Shiyang5, PEI Tao1,2,*(
)
Received:
2020-07-22
Revised:
2020-09-13
Online:
2020-11-28
Published:
2021-01-28
Contact:
PEI Tao
E-mail:chenxiao@lreis.ac.cn;peit@lreis.ac.cn
Supported by:
CHEN Xiao, HUANG Yujin, LI Jiahui, WANG Shiyang, PEI Tao. Clustering characteristics of COVID-19 cases and influencing factors in Chongqing Municipality[J].PROGRESS IN GEOGRAPHY, 2020, 39(11): 1798-1808.
Tab.3
Hot spot residential communities of all confirmed cases in Chongqing Municipality"
区县名 | 热点 | 确诊病例 | |||
---|---|---|---|---|---|
街道数量/个 | 占区县街道比例/% | 街道数量/个 | 占区县街道比例/% | ||
万州区 | 10 | 19.23 | 25 | 48.08 | |
綦江区 | 3 | 9.38 | 5 | 15.63 | |
奉节县 | 3 | 9.38 | 5 | 15.63 | |
潼南区 | 2 | 9.09 | 4 | 18.18 | |
大足区 | 1 | 3.70 | 2 | 7.41 | |
垫江县 | 1 | 3.85 | 6 | 23.08 | |
丰都县 | 1 | 3.23 | 3 | 9.68 | |
江北区 | 1 | 8.33 | 6 | 50.00 | |
沙坪坝区 | 1 | 3.85 | 3 | 11.54 | |
石柱土家族自治县 | 1 | 3.13 | 3 | 9.38 | |
长寿区 | 1 | 5.56 | 8 | 44.44 | |
忠县 | 1 | 3.45 | 8 | 27.59 |
Tab.4
Factor loading matrix"
变量名称 | 因子载荷 | 共同度 | |||
---|---|---|---|---|---|
居民分布因子 | 生活服务因子 | 城市交通因子 | 街道间活动因子 | ||
活跃手机用户密度 | 0.56 | 0.48 | 0.31 | 0.56 | 0.97 |
街道间交互强度 | 0.38 | 0.34 | 0.48 | 0.70 | 0.98 |
夜光指数 | 0.62 | 0.31 | 0.53 | 0.27 | 0.84 |
路网密度 | 0.35 | 0.22 | 0.64 | 0.38 | 0.73 |
交通站点POI密度 | 0.08 | 0.15 | 0.38 | 0.09 | 0.18 |
住宅小区POI密度 | 0.74 | 0.43 | 0.22 | 0.31 | 0.87 |
商店超市POI密度 | 0.42 | 0.68 | 0.40 | 0.27 | 0.88 |
餐饮服务POI密度 | 0.40 | 0.68 | 0.41 | 0.30 | 0.88 |
Tab.5
Multiple linear regression results of case density and factor scores"
所有病例密度 | 本地病例密度 | 外地输入病例密度 | |||||||
---|---|---|---|---|---|---|---|---|---|
系数 | P | 系数 | P | 系数 | P | ||||
截距 | -0.154 | 0.025 | -0.143 | 0.093 | -0.282 | <0.001 | |||
居民分布因子 | 0.081 | 0.085 | -0.143 | 0.009 | 0.120 | <0.001 | |||
生活服务因子 | 0.314 | <0.001 | 0.381 | <0.001 | 0.115 | 0.002 | |||
城市交通因子 | 0.673 | <0.001 | 0.951 | <0.001 | 0.187 | <0.001 | |||
街道间活动因子 | 0.288 | <0.001 | 0.478 | <0.001 | 0.081 | 0.054 | |||
多元R2 | 0.560 | 0.651 | 0.543 | ||||||
调整R2 | 0.547 | 0.636 | 0.523 |
[1] | WHO. Coronavirus disease (COVID-19) situation reports[EB/OL]. 2020-03-12 [2020-07-22]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/202003 12-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_4. |
[2] | 周成虎, 裴韬, 杜云艳, 等. 新冠肺炎疫情大数据分析与区域防控政策建议[J]. 中国科学院院刊, 2020,35(2):200-203. |
[ Zhou Chenghu, Pei Tao, Du Yuyan, et al. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy. Bulletin of Chinese Academy of Sciences, 2020,35(2):200-203. ] | |
[3] |
Kang D, Choi H, Kim J-H, et al. Spatial epidemic dynamics of the COVID-19 outbreak in China[J]. International Journal of Infectious Diseases, 2020,94:96-102.
doi: 10.1016/j.ijid.2020.03.076 pmid: 32251789 |
[4] |
Mo C, Tan D, Mai T, et al. An analysis of spatiotemporal pattern for COVID-19 in China based on space-time cube[J]. Journal of Medical Virology, 2020,92:1587-1595.
doi: 10.1002/jmv.25834 pmid: 32249952 |
[5] | Xiong Y, Wang Y, Chen F, et al. Spatial statistics and influencing factors of the COVID-19 epidemic at both prefecture and county levels in Hubei Province, China[J]. International Journal of Environmental Research and Public Health, 2020,17(11):3903. doi: 10.3390/ijerph17113903. |
[6] |
Desjardins M R, Hohl A, Delmelle E M. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters[J]. Applied Geography, 2020,118:102202. doi: 10.1016/j.apgeog.2020.102202.
doi: 10.1016/j.apgeog.2020.102202 pmid: 32287518 |
[7] | 李欣, 周林, 贾涛, 等. 城市因素对COVID-19疫情的影响: 以武汉市为例[J]. 武汉大学学报(信息科学版), 2020,45(6):826-835. |
[ Li Xin, Zhou Lin, Jia Tao, et al. Influence of urban factors on the COVID-19 epidemic: A case study of Wuhan City. Geomatics and Information Science of Wuhan University, 2020,45(6):826-835. ] | |
[8] |
Chinazzi M, Davis J T, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020,368:395-400.
pmid: 32144116 |
[9] |
Kraemer M U G, Yang C-H, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020,368:493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[10] |
Jia J S, Lu X, Yuan Y, et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. Nature, 2020,582:389-394.
pmid: 32349120 |
[11] | 王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. 地理研究, 2020,39(7):1450-1462. |
[ Wang Jiao'e, Du Delin, Wei Ye, et al. The development of COVID-19 in China: Spatial diffusion and geographical pattern. Geographical Research, 2020,39(7):1450-1462. ] | |
[12] | 汪冉, 张明鑫, 李浩. 河南省交通通达水平对新型冠状病毒传播的影响[J]. 河南理工大学学报(自然科学版), 2020,39(6):68-77. |
[ Wang Ran, Zhang Mingxin, Li Hao. The influence of Henan's traffic access level on SARS-CoV-2 transmission. Journal of Henan Polytechnic University (Natural Science), 2020,39(6):68-77. ] | |
[13] | Mollalo A, Vahedi B, Rivera K M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States[J]. Science of the Total Environment, 2020,728:138884. doi: 10.1016/j.scitotenv.2020.138884. |
[14] |
Pourghasemi H R, Pouyan S, Heidari B, et al. Spatial modelling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between 19 February to 14 June 2020)[J]. International Journal of Infectious Diseases, 2020,98:90-108.
pmid: 32574693 |
[15] |
Lai S, Ruktanonchai N W, Zhou L, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020,585:410-413.
doi: 10.1038/s41586-020-2293-x pmid: 32365354 |
[16] | 重庆市统计局. 2019年重庆市国民经济和社会发展统计公报 [EB/OL]. 2020-03-19 [2020-07-22]. http://www.cq.gov.cn/zqfz/gmjj/tjgb/202004/t20200402_6963113.html. |
[ Chongqing Municipal Bureau of statistics. Statistical bulletin of Chongqing national economic and social development in 2019. 2020-03-19 [2020-07-22]. http://www.cq.gov.cn/zqfz/gmjj/tjgb/202004/t20200402_6963113.html.] | |
[17] |
Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China[J]. Chinese Journal of Epidemiology, 2020,41(2):145-151.
pmid: 32064853 |
[18] | 陆步来, 王劲峰, 曾光. 疾病空间聚集性研究方法[J]. 疾病监测, 2010,25(5):394-397. |
[ Lu Bulai, Wang Jinfeng, Zeng Guang. Approaches to study disease clustering in space. Disease Surveillance, 2010,25(5):394-397. ] | |
[19] | 王劲峰. 空间分析[M]. 北京: 科学出版社, 2006: 55-56. |
[ Wang Jinfeng. Spatial analysis. Beijing,China: Science Press, 2006: 55-56. ] | |
[20] |
Getis A, Ord J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992,24:189-206.
doi: 10.1111/gean.1992.24.issue-3 |
[21] | 何晓群. 多元统计分析[M]. 北京: 中国人民大学出版社, 2004: 99. |
[ He Xiaoqun. Multivariate statistical analysis. Beijing,China: China Renmin University Press, 2004: 99. ] | |
[22] | 王斌会. 多元统计分析与R语言建模[M]. 广州: 暨南大学出版社, 2010: 55-58. |
[ Wang Binhui. Multivariate statistical analysis and R language modeling. Guangzhou,China: Jinan University Press, 2010: 55-58. ] | |
[23] | 杨雨琦, 孙琦, 王悦欣, 等. 重庆市新型冠状病毒肺炎(NCP)疫情分析与趋势预测[J]. 重庆师范大学学报(自然科学版), 2020,37(1):135-140. |
[ Yang Yuqi, Sun Qi, Wang Yuexin, et al. Epidemic situation analysis and trend forecast of New Coronavirus Pneumonia (NCP) in Chongqing. Journal of Chongqing Normal University(Natural Science), 2020,37(1):135-140. ] | |
[24] | 赵序茅, 李欣海, 聂常虹. 基于大数据回溯新冠肺炎的扩散趋势及中国对疫情的控制研究[J]. 中国科学院院刊, 2020,35(3):248-255. |
[ Zhao Xumao, Li Xinhai, Nie Changhong. Backtracking transmission of COVID-19 in China based on big data source, and effect of strict pandemic control policy. Bulletin of Chinese Academy of Sciences, 2020,35(3):248-255. ] | |
[25] | 游光荣, 游翰霖, 赵得智, 等. 新冠肺炎疫情传播模型及防控干预措施的因果分析评估[J]. 科技导报, 2020,38(6):90-96. |
[ You Guangrong, You Hanlin, Zhao Dezhi, et al. Dynamic model of COVID-19 transmission and assessment of control interventions based on causal analysis. Science & Technology Review, 2020,38(6):90-96. ] | |
[26] | 刘郑倩, 叶玉瑶, 张虹鸥, 等. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径[J]. 热带地理, 2020,40(3):422-431. |
[ Liu Zhengqian, Ye Yuyao, Zhang Hong'ou, et al. Spatio-temporal characteristics and transmission path of COVID-19 cluster cases in Zhuhai. Tropical Geography, 2020,40(3):422-431. ] | |
[27] | 赵宏波, 魏甲晨, 王爽, 等. 大城市新冠肺炎疫情风险评估与精准防控对策: 以郑州市为例[J]. 经济地理, 2020,40(4):103-109, 124. |
[ Zhao Hongbo, Wei Jiachen, Wang Shuang, et al. The risk assessment of COVID-2019 epidemic in metropolis and precise prevention and control measures: A case study of Zhengzhou City. Economic Geography. 2020,40(4):103-109, 124. ] | |
[28] | 刘勇, 杨东阳, 董冠鹏, 等. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估: 基于1243例病例报告的分析[J]. 经济地理, 2020,40(3):24-32. |
[ Liu Yong, Yang Dongyang, Dong Guanpeng, et al. The spatio-temporal spread characteristics of 2019 novel coronavirus pneumonia and risk assessment based on population movement in Henan Province: Analysis of 1243 individual cases reports. Economic Geography, 2020,40(3):24-32. ] | |
[29] | 卿菁. 特大城市疫情防控机制: 经验、困境与重构: 以武汉市新冠肺炎疫情防控为例[J]. 湖北大学学报(哲学社会科学版), 2020,47(3):21-32. |
[ Qing Jing. Analysis on epidemic prevention and control mechanism of megacity: Based on the predicament, effect and reconstruction of Wuhan's combat COVID-19. Journal of Hubei University (Philosophy and Social Sciences), 2020,47(3):21-32. ] | |
[30] | 张宇, 田万利, 吴忠广, 等. 基于改进SEIR模型的新冠肺炎疫情沿交通线路传播机制[J]. 交通运输工程学报, 2020,20(3):150-158. |
[ Zhang Yu, Tian Wanli, Wu Zhongguang, et al. Transmission mechanism of COVID-19 epidemic along traffic routes based on improved SEIR model. Journal of Traffic and Transportation Engineering, 2020,20(3):150-158. ] |
|