PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (8): 1412-1422.doi: 10.18306/dlkxjz.2020.08.014
• Reviews • Previous Articles Next Articles
WU Kejie1,2(), WU Jidong1,2,*(
), YE Mengqi1,2
Received:
2019-11-04
Revised:
2020-04-05
Online:
2020-08-28
Published:
2020-10-28
Contact:
WU Jidong
E-mail:wukejiennu@163.com;wujidong@bnu.edu.cn
Supported by:
WU Kejie, WU Jidong, YE Mengqi. A review on the application of social media data in natural disaster emergency management[J].PROGRESS IN GEOGRAPHY, 2020, 39(8): 1412-1422.
[1] | Sun Q Y, Li X Y, Yu F. Designing an emergency continuity plan for a megacity government: A conceptual framework for coping with natural catastrophes[J]. International Journal of Critical Infrastructure Protection, 2016,13:28-35. |
[2] | 王静爱, 史培军, 朱骊. 中国主要自然致灾因子的区域分异[J]. 地理学报, 1994,49(1):18-26. |
[ Wang Jing'ai, Shi Peijun, Zhu Li. Regional variations of major natural disaster-causing factors in China. Acta Geographica Sinica, 1994,49(1):18-26. ] | |
[3] | Altay N, Green III W G. OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2006,175(1):475-493. |
[4] | Galindo G, Batta R. Review of recent developments in OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2013,230(2):201-211. |
[5] | Akter S, Wamba S F. Big data and disaster management: A systematic review and agenda for future research[J]. Annals of Operations Research, 2017,283(2):1-21. |
[6] | 史培军, 孔锋, 叶谦, 等. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014,29(11):1205-1211. |
[ Shi Peijun, Kong Feng, Ye Qian, et al. Disaster risk science development and disaster risk reduction using science and technology. Advances in Earth Science, 2014,29(11):1205-1211. ] | |
[7] | 吴吉东, 何鑫, 王菜林, 等. 自然灾害损失分类及评估研究评述[J]. 灾害学, 2018,33(4):157-163. |
[ Wu Jidong, He Xin, Wang Cailin, et al. A review on classification and loss assessment of natural disasters. Journal of Catastrophology, 2018,33(4):157-163. ] | |
[8] | Lin Moe T, Pathranarakul P. An integrated approach to natural disaster management: Public project management and its critical success factors[J]. Disaster Prevention and Management, 2006,15(3):396-413. |
[9] | Eckhardt D, Leiras A, Thomé A M T. Systematic literature review of methodologies for assessing the costs of disasters[J]. International Journal of Disaster Risk Reduction, 2019,33:398-416. |
[10] | 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016,45(4):379-384. |
[ Li Deren. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 2016,45(4):379-384. ] | |
[11] | 梁春阳, 林广发, 张明锋, 等. 社交媒体数据对反映台风灾害时空分布的有效性研究[J]. 地球信息科学学报, 2018,20(6):807-816. |
[ Liang Chunyang, Lin Guangfa, Zhang Mingfeng, et al. Assessing the effectiveness of social media data in mapping the distribution of typhoon disasters. Journal of Geo-information Science, 2018,20(6):807-816. ] | |
[12] | Lindsay B R. Social media and disasters: Current uses, future options, and policy considerations [R/OL]. Congressional Research Service Report R41987. https://fas.org/sgp/crs/homesec/R41987.pdf. 2011. |
[13] | Landwehr P M, Carley K M. Social media in disaster relief[M]// Wu W W. Data mining and knowledge discovery for big data. Berlin, Germany: Springer, 2014: 225-257. |
[14] |
Alexander D E. Social media in disaster risk reduction and crisis management[J]. Science and Engineering Ethics, 2014,20(3):717-733.
pmid: 24306994 |
[15] | Joyce K E, Belliss S E, Samsonov S V, et al. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J]. Progress in Physical Geography, 2009,33(2):183-207. |
[16] | Jasper K, Gurtz J, Lang H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model[J]. Journal of Hydrology, 2002,267(1-2):40-52. |
[17] | Goodchild M F. Citizens as sensors: The world of volunteered geography[J]. GeoJournal, 2007,69(4):211-221. |
[18] | Goodchild M F. Citizens as voluntary sensors: Spatial data infrastructure in the world of Web 2.0[J]. International Journal of Spatial Data Infrastructures Research, 2007,2(2):24-32. |
[19] | 张红平, 顾学云, 熊萍, 等. 志愿者地理信息研究与应用初探[J]. 地理信息世界, 2012,10(4):67-71. |
[ Zhang Hongping, Gu Xueyun, Xiong Ping, et al. Research and application of volunteer geographic information. Geomatics World, 2012,10(4):67-71. ] | |
[20] | Scharl A, Tochtermann K. The geospatial Web: How geobrowsers, social software and the Web 2.0 are shaping the network society[M]. New York, USA: Springer, 2007. |
[21] | Smith J B. Collective intelligence in computer-based collaboration[M]. Washington D C, USA: American Psychological Association, 1996. |
[22] | Turner A. Introduction to neogeography[M]. Sebastopol, USA: O'Reilly Media, 2006. |
[23] | Hjorth L, Kim K Y. The mourning after: A case study of social media in the 3.11 earthquake disaster in Japan[J]. Television & New Media, 2011,12(6):552-559. |
[24] |
Houston J B, Hawthorne J, Perreault M F, et al. Social media and disasters: A functional framework for social media use in disaster planning, response, and research[J]. Disasters, 2015,39(1):1-22.
doi: 10.1111/disa.12092 pmid: 25243593 |
[25] | Starbird K, Palen L, Hughes A L, et al. Chatter on the red: What hazards threat reveals about the social life of microblogged information[C]// ACM. Proceedings of the 2010 ACM conference on computer supported cooperative work. New York, USA: Association for Computing Machinery, 2010. |
[26] | Vieweg S, Hughes A L, Starbird K, et al. Microblogging during two natural hazards events: What twitter may contribute to situational awareness[C]// ACM. Proceedings of the SIGCHI conference on human factors in computing systems. New York, USA: Association for Computing Machinery, 2010. |
[27] | Acar A, Muraki Y. Twitter for crisis communication: Lessons learned from Japan's tsunami disaster[J]. International Journal of Web Based Communities, 2011,7(3):392-402. |
[28] | Bruns A, Burgess J, Crawford K, et al. #qldfloods and @QPSMedia: Crisis communication on Twitter in the 2011 South East Queensland floods [R/OL]. https://eprints.qut.edu.au/48241/. ARC Centre of Excellence for Creative Industries and Innovation. Brisbane, Australia: Queensland University of Technology, 2012. |
[29] | Dugdale J, Van de Walle B, Koeppinghoff C. Social media and SMS in the Haiti earthquake[C]// ACM. Proceedings of the 21st international conference on world wide web. New York, USA: Association for Computing Machinery, 2012. |
[30] | Starbird K, Muzny G, Palen L. Learning from the crowd: Collaborative filtering techniques for identifying on-the-ground Twitterers during mass disruptions[C]// ACM. Proceedings of 9th international conference on information systems for crisis response and management. Vancouver, Canada: Simon Fraser University, 2012. |
[31] | Imran M, Elbassuoni S, Castillo C, et al. Extracting information nuggets from disaster-related messages in social media[C]// ACM. Proceedings of the tenth international conference on information systems for crisis response and management (ISCRAM'13). Baden-Baden, Germany, 2013: 12-15. |
[32] | Neubaum G, Rösner L, Rosenthal-von der Pütten A M, et al. Psychosocial functions of social media usage in a disaster situation: A multi-methodological approach[J]. Computers in Human Behavior, 2014,34:28-38. |
[33] | Mersham G. Social media and public information management: The September 2009 tsunami threat to New Zealand[J]. Media International Australia, 2010,137(1):130-143. |
[34] | Wang Z, Ye X. Space, time, and situational awareness in natural hazards: A case study of Hurricane Sandy with social media data[J]. Cartography and Geographic Information Science, 2019,46(4):334-346. |
[35] | Bakillah M, Li R Y, Liang S H L. Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: The case study of typhoon Haiyan[J]. International Journal of Geographical Information Science, 2015,29(2):258-279. |
[36] |
Arthur R, Boulton C A, Shotton H, et al. Social sensing of floods in the UK[J]. PLoS One, 2018,13(1):e0189327. doi: 10.1371/journal.pone.0189327.
pmid: 29385132 |
[37] | Wang Y, Ruan S, Wang T, et al. Rapid estimation of an earthquake impact area using a spatial logistic growth model based on social media data[J]. International Journal of Digital Earth, 2019,12(11):1265-1284. |
[38] | Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors[C]// ACM. Proceedings of the 19th international conference on world wide web. New York, USA: Association for Computing Machinery, 2010. |
[39] | Crooks A, Croitoru A, Stefanidis A, et al. Earthquake: Twitter as a distributed sensor system[J]. Transactions in GIS, 2013,17(1):124-147. |
[40] | 孙振凯. PAGER: 地震影响的快速评估(USGS情况说明书第2010-3036号)[J]. 国际地震动态, 2013(1):4-7. |
[ Sun Zhenkai. PAGER: Rapid assessment of the impact of earthquakes (USGS fact sheet No. 2010-3036). Recent Developments in World Seismology, 2013(1):4-7. ] | |
[41] | Resch B, Usländer F, Havas C. Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment[J]. Cartography and Geographic Information Science, 2018,45(4):362-376. |
[42] | Ogie R I, Forehead H. Investigating the accuracy of georeferenced social media data for flood mapping: The PetaJakarta.org case study[C]// Hellingrath B, Gojmerac R. Proceedings of the 2017 4th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM). New York, USA: IEEE, 2017: 30-35. |
[43] | Yuan F, Liu R. Feasibility study of using crowdsourcing to identify critical affected areas for rapid damage assessment: Hurricane Matthew case study[J]. International Journal of Disaster Risk Reduction, 2018,28:758-767. |
[44] | Kongthon A, Haruechaiyasak C, Pailai J, et al. The role of social media during a natural disaster: A case study of the 2011 Thai flood[J]. International Journal of Innovation and Technology Management, 2014,11(3):2227-2232. |
[45] | Wu D, Cui Y. Disaster early warning and damage assessment analysis using social media data and geo-location information[J]. Decision Support Systems, 2018,111:48-59. |
[46] | Fang J, Hu J, Shi X, et al. Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm[J]. International Journal of Disaster Risk Reduction, 2019,34:275-282. |
[47] | Enenkel M, Saenz S M, Dookie D S, et al. Social media data analysis and feedback for advanced disaster risk management [J/OL]. Computing Research Repository, 2018: 1802.02631. https://arxiv.org/abs/1802.02631. |
[48] | Priya S, Bhanu M, Dandapat S K, et al. Characterizing infrastructure damage after earthquake: a split-query based IR approach[C]// ACM. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). New York, USA: Association for Computing Machinery, 2018: 202-209. |
[49] | Li X, Caragea D, Zhang H, et al. Localizing and quantifying damage in social media images[C]// ACM. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). New York, USA: Association for Computing Machinery, 2018: 194-201. |
[50] | Schnebele E, Cervone G, Waters N. Road assessment after flood events using non-authoritative data[J]. Natural Hazards and Earth System Sciences, 2014,14(4):1007-1015. |
[51] | Vo Bao-Khanh H, Collier N. Twitter emotion analysis in earthquake situations[J]. International Journal of Computational Linguistics and Applications, 2013,4(1):159-173. |
[52] | Sadri A M, Hasan S, Ukkusuri S V, et al. Crisis communication patterns in social media during Hurricane Sandy[J]. Transportation Research Record, 2018,2672(1):125-137. |
[53] | Varga I, Sano M, Torisawa K, et al. Aid is out there: Looking for help from tweets during a large scale disaster[C]// Schuetze H, Fung P, Poesio M. Proceedings of the 51st annual meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria, 2013: 1619-1629. |
[54] |
Martín Y, Li Z, Cutter S L. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew[J]. PLoS One, 2017,12(7):e0181701. doi: 10.1371/journal.pone.0181701.
pmid: 28753667 |
[55] | Kumar D, Ukkusuri S V. Utilizing geo-tagged tweets to understand evacuation dynamics during emergencies: A case study of Hurricane Sandy[C]// Champin P, Gandon F, Médini L. Companion Proceedings of the the web conference 2018. Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2018: 1613-1620. |
[56] | Gruebner O, Lowe S, Sykora M, et al. Spatio-temporal distribution of negative emotions in New York City after a natural disaster as seen in social media[J]. International Journal of Environmental Research and Public Health, 2018,15(10):2275. doi: 10.3390/ijerph15102275. |
[57] | Tang Z, Zhang L, Xu F, et al. Examining the role of social media in California's drought risk management in 2014[J]. Natural Hazards, 2015,79(1):171-193. |
[58] | Yin J, Lampert A, Cameron M, et al. Using social media to enhance emergency situation awareness[J]. IEEE Intelligent Systems, 2012,27(6):52-59. |
[59] |
Kryvasheyeu Y, Chen H, Obradovich N, et al. Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016,2(3):e1500779. doi: 10.1126/sciadv.1500779.
doi: 10.1126/sciadv.1500779 pmid: 27034978 |
[60] | Earle P S, Bowden D C, Guy M. Twitter earthquake detection: Earthquake monitoring in a social world[J]. Annals of Geophysics, 2012,54(6):708-715. |
[61] |
Morss R E, Demuth J L, Lazrus H, et al. Hazardous weather prediction and communication in the modern information environment[J]. Bulletin of the American Meteorological Society, 2017,98(12):2653-2674.
doi: 10.1175/BAMS-D-16-0058.1 |
[62] |
Zou L, Lam N S N, Cai H, et al. Mining Twitter data for improved understanding of disaster resilience[J]. Annals of the American Association of Geographers, 2018,108(5):1422-1441.
doi: 10.1080/24694452.2017.1421897 |
[63] | Barker J L P, Macleod C J A. Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities[J]. Environmental Modelling & Software, 2019,115:213-227. |
[64] |
Liu F, Xu D. Social roles and consequences in using social media in disasters: A structurational perspective[J]. Information Systems Frontiers, 2018,20(4):693-711.
doi: 10.1007/s10796-017-9787-6 |
[65] |
Laylavi F, Rajabifard A, Kalantari M. A multi-element approach to location inference of twitter: A case for emergency response[J]. ISPRS International Journal of Geo-Information, 2016,5(5):56. doi: 10.3390/ijgi5050056.
doi: 10.3390/ijgi5050056 |
[66] | Gao H, Barbier G, Goolsby R. Harnessing the crowdsourcing power of social media for disaster relief[J]. IEEE Intelligent Systems, 2011,26(3):10-14. |
[67] | 曹劲舟, 武红宇. 基于微博位置签到数据的POI更新方法[J]. 地理空间信息, 2013,11(2):15-18. |
[ Cao Jingzhou, Wu Hongyu. POI update method based on weibo location check-in data. Geospatial Information, 2013,11(2):15-18. ] | |
[68] | Sakaki T, Matsuo Y, Kurihara S, et al. The possibility of social media analysis for disaster management[C]// IEEE. 2013 IEEE Region 10 Humanitarian Technology Conference. New York, USA: IEEE, 2013: 238-243. |
[69] |
Yu M, Yang C, Li Y. Big data in natural disaster management: A review[J]. Geosciences, 2018,8(5):165. doi: 10.3390/geosciences8050165.
doi: 10.3390/geosciences8050165 |
[70] | Ghurye J, Krings G, Frias-Martinez V. A framework to model human behavior at large scale during natural disasters[C]// IEEE. 2016 17th IEEE International Conference on Mobile Data Management (MDM). New York, USA: IEEE, 2016: 18-27. |
[71] |
Kusumo A N L, Reckien D, Verplanke J. Utilising volunteered geographic information to assess resident's flood evacuation shelters. Case study: Jakarta[J]. Applied Geography, 2017,88:174-185.
doi: 10.1016/j.apgeog.2017.07.002 |
[72] | Chan J C. The role of social media in crisis preparedness, response and recovery [R/OL]. http://www.oecd.org/governance/risk/The%20role%20of%20Social%20media%20in%20crisis%20preparedness,%20response%20and%20recovery.pdf. OECD Report, 2012: 1-16. |
[73] |
Feng Y, Sester M. Extraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos[J]. ISPRS International Journal of Geo-Information, 2018,7(2):39. doi: 10.3390/ijgi7020039.
doi: 10.3390/ijgi7020039 |
[74] | Virtual Social Media Working Group, DHS First Responders Group. Lessons learned: Social media and hurricane sandy [R/OL]. Homeland Security: Science and Technology. https://www.hsdl.org/?view&did=739332. Washington D C, USA: US Department of Homeland Security, 2013. |
[75] |
Cervone G, Sava E, Huang Q, et al. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study[J]. International Journal of Remote Sensing, 2016,37(1):100-124.
doi: 10.1080/01431161.2015.1117684 |
[76] |
Liou Y A, Kar S K, Chang L. Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan Earthquake[J]. International Journal of Remote Sensing, 2010,31(13):3355-3368.
doi: 10.1080/01431161003727655 |
[77] |
Yan Y, Eckle M, Kuo C L, et al. Monitoring and assessing post-disaster tourism recovery using geotagged social media data[J]. ISPRS International Journal of Geo-Information, 2017,6(5):144. doi: 10.3390/ijgi6050144.
doi: 10.3390/ijgi6050144 |
[78] | 周利敏, 刘和健. 人工智能时代的社交媒体与灾害治理: 兼论国际案例[J]. 理论探讨, 2019(6):175-181. |
[ Zhou Limin, Liu Hejian. On social media and disaster management in the age of artificial intelligence and international cases. Theoretical Discussion, 2019(6):175-181. ] | |
[79] | 徐伟, 赵斌, 吉根林. 基于滑动窗口的微博时间线摘要算法[J]. 数据采集与处理, 2017,32(3):523-532. |
[ Xu Wei, Zhao Bin, Ji Genlin. A time line summary algorithm based on sliding window. Data Acquisition and Processing, 2017,32(3):523-532. ] | |
[80] | Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on twitter[C]// Adamic L A, Baeza-Yates R, Counts S. Proceedings of the fifth international conference on weblogs and social media. Barcelona, Spain, 2011: 438-441. |
[81] | Huang Y, Dong H, Yesha Y, et al. A scalable system for community discovery in twitter during hurricane sandy[C]// IEEE. 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. New York, USA: IEEE, 2014: 893-899. |
[82] | Win S S M, Aung T N. Target oriented tweets monitoring system during natural disasters[C]// IEEE. 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). New York, USA: IEEE, 2017: 143-148. |
[83] | 孙铁利, 刘延吉. 中文分词技术的研究现状与困难[J]. 信息技术, 2009,33(7):187-189. |
[ Sun Tieli, Liu Yanji. Research status and difficulties of Chinese word segmentation technology. Information Technology, 2009,33(7):187-189. ] | |
[84] | 吴建胜, 战学刚, 迟呈英. 一种基于自动机的分词方法[J]. 计算机工程与应用, 2005,41(8):81-82. |
[ Wu Jiansheng, Zhan Xuegang, Chi Chengying. A word segmentation method based on automata. Computer Engineering and Applications, 2005,41(8):81-82. ] | |
[85] | 赵伟, 戴新宇, 尹存燕, 等. 一种规则与统计相结合的汉语分词方法[J]. 计算机应用研究, 2004,21(3):23-25. |
[ Zhao Wei, Dai Xinyu, Yin Cunyan, et al. A Chinese word segmentation method combining rules and statistics. Computer Application Research, 2004,21(3):23-25. ] | |
[86] | 张长利, 赫枫龄, 左万利. 一种基于后缀数组的无词典分词方法[J]. 吉林大学学报(理学版), 2004,42(4):548-553. |
[ Zhang Changli, He Fengling, Zuo Wanli. A lexicographical word segmentation method based on suffix array. Journal of Jilin University (Science Edition), 2004,42(4):548-553. ] | |
[87] | 刘商飞, 张志祥. 基于改进的Bayes判别法的中文多义词消歧[J]. 计算机与数字工程, 2009,37(10):32-35. |
[ Liu Shangfei, Zhang Zhixiang. Chinese polysemy disambiguation based on the improved Bayes discrimination method. Computer & Digital Engineering, 2009,37(10):32-35. ] | |
[88] | 张珊, 于留宝, 胡长军. 基于表情图片与情感词的中文微博情感分析[J]. 计算机科学, 2012,39(S3):146-148. |
[ Zhang Shan, Yu Liubao, Hu Changjun. Emotion analysis of Chinese microblog based on emoticons and emoticons. Computer Science, 2012,39(S3):146-148. ] | |
[89] | 陈永波. 微博图像文字内容识别与感知[D]. 北京: 北京交通大学, 2014. |
[ Chen Yongbo. Weibo image text content recognition and perception. Beijing, China: Beijing Jiaotong University, 2014. ] | |
[90] | 关雪峰, 曾宇媚. 时空大数据背景下并行数据处理分析挖掘的进展及趋势[J]. 地理科学进展, 2018,37(10):14-27. |
[ Guan Xuefeng, Zeng Yumei. Development and trend of parallel data processing in the context of spatiotemporal big data. Progress in Geography, 2018,37(10):14-27. ] | |
[91] | 杨喜平, 方志祥. 移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J]. 地理科学进展, 2018,37(7):18-27. |
[ Yang Xiping, Fang Zhixiang. Research progress of crowd moving mode and urban spatial structure from the perspective of mobile positioning big data. Progress in Geography, 2018,37(7):18-27. ] | |
[92] |
Li Z, Wang C, Emrich C T, et al. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods[J]. Cartography and Geographic Information Science, 2018,45(2):97-110.
doi: 10.1080/15230406.2016.1271356 |
[1] | RONG Xiaoqing, PANG Jiangli, HUANG Chunchang, ZHOU Yali, WANG Zhaoduo, ZHANG Yuzhu, GUO Yongqiang, ZHAO Hui, CHUI Yuda. Prehistoric catastrophic surface processes and their impacts in the Guanting Basin, Qinghai Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1319-1332. |
[2] | LI Zhixuan, HE Zhongyu, ZHANG Yiming, JIN Shuangshuang, WANG Xuemei, ZHU Jie, LIU Shicen. Impact of greenspace exposure on residents’ mental health: A case study of Nanjing City [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 779-791. |
[3] | Yongjun XIE, Xia PENG, Zhou HUANG, Yu LIU. Image perception of Beijing's regional hotspots based on microblog data [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1099-1110. |
[4] | Kan ZHOU, Jie FAN, Yong XU. Paradigm and prospects of emergent evaluation of post-disaster resource and environmental carrying capacity for reconstruction planning [J]. PROGRESS IN GEOGRAPHY, 2017, 36(3): 286-295. |
[5] | Weixia YIN, Han YU, Shujuan CUI, Jing’ai WANG. Review on methods for estimating the loss of life induced by heavy rain and floods [J]. PROGRESS IN GEOGRAPHY, 2016, 35(2): 148-158. |
[6] | Peijun SHI, Yi YUAN. Integrated assessment of large-scale natural disasters in China [J]. PROGRESS IN GEOGRAPHY, 2014, 33(9): 1145-1151. |
[7] | Xilin LIU, Zhihai SHANG. Risk analysis methods of natural disasters and their applicability [J]. PROGRESS IN GEOGRAPHY, 2014, 33(11): 1486-1497. |
[8] | YIN Yanyu, WANG Jingai, LEI Yongdeng, YI Xiangsheng. Progress on Research Methods of Adaptation to Natural Disaster [J]. PROGRESS IN GEOGRAPHY, 2012, 31(7): 953-962. |
[9] | FAN Jie, LIU Weidong, JIN Fengjun, LIU Yansui, ZHANG Wenzhong, LIU Hui, WANG Chengjin, WANG Dai. The Research Progress of Human-Economic Geography in Major Plans of Science and Technology [J]. PROGRESS IN GEOGRAPHY, 2011, 30(12): 1548-1554. |
[10] | WU Jidong1,2, LI Ning1,3, HU Aijun1,2, CUI Weijia1,2, ZHANG Peng1,2|WEN Yuting1,. Economic Impact of Natural Disaster and Indirect Economic Loss Estimation Methods [J]. PROGRESS IN GEOGRAPHY, 2009, 28(6): 877-885. |
[11] | CHEN Ya ning, YANG Si quan . The application and model of grey association for evaluation of natural disaster [J]. PROGRESS IN GEOGRAPHY, 1999, 18(2): 158-162. |
[12] | Zhong Zhaozhan . FEATURE AND EVALUATION OF NATURAL DISASTERS AND ENVIRONMENT IN THE COASTAL ZONES OF CHINA [J]. PROGRESS IN GEOGRAPHY, 1997, 16(1): 44-50. |
|