PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (7): 1126-1139.doi: 10.18306/dlkxjz.2020.07.006
• Articles • Previous Articles Next Articles
Received:
2019-05-09
Revised:
2019-07-09
Online:
2020-07-28
Published:
2020-09-28
Supported by:
SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J].PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139.
Tab.1
Information of the seven sub-basins in the Yarlung Zangbo River"
拉孜 | 拉孜—奴各沙 | 日喀则 | 拉萨 | 奴各沙—羊村 | 羊村—奴下 | 奴下—巴昔卡 | |
---|---|---|---|---|---|---|---|
水文观测站 | 拉孜站 | 奴各沙站 | 日喀则站 | 拉萨站 | 羊村站 | 奴下站 | — |
经度位置/(°E) | 29.05 | 29.32 | 29.25 | 29.63 | 29.28 | 29.47 | 28.10 |
纬度位置/(°N) | 87.38 | 89.71 | 88.88 | 91.15 | 91.88 | 94.57 | 95.53 |
流域面积/km2 | 50553 | 45327 | 11064 | 26235 | 26599 | 41770 | 51507 |
流域平均海拔/m | 5370 | 4983 | 5353 | 5272 | 4767 | 4937 | 3711 |
研究时段 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | — |
实测径流/(m3/s) | 172.18 | 202.15 | 55.16 | 300.02 | 163.87 | 920.31 | — |
对总径流贡献/% | 9.17 | 11.09 | 3.76 | 15.98 | 8.99 | 51.01 | — |
冰川面积/km2 | 835.40 | 145.90 | 129.50 | 266.50 | 458.14 | 1104.36 | 5351.76 |
冰川占比/% | 1.60 | 0.41 | 1.21 | 0.98 | 1.71 | 2.81 | 10.21 |
积雪覆盖比例/% | 15.58 | 7.12 | 6.98 | 23.08 | 10.21 | 24.25 | 31.97 |
Tab.2
Summary of the precipitation products evaluated in this study"
降水数据 | 研究时段 | 时空分辨率 | 数据类别 | 来源 |
---|---|---|---|---|
CMA | 1980—2016年 | 1/12°、逐日 | 站点插值数据 | 国家气象局 |
APHRODITE | 1979—2007年 | 0.25°、逐日 | 基于站点数据 | Yatagai等[ |
PERSIANN-CDR | 1983—2016年 | 0.25°、6 h | 遥感卫星数据 | Ashouri等[ |
GPM | 2015—2016年 | 0.10°、逐日 | 遥感卫星数据 | Huffman等[ |
GLDAS | 1980—2016年 | 0.25°、3 h | 再分析数据 | Rodell等[ |
HAR | 2001—2013年 | 10 km、逐日 | 区域气候模式输出 | Maussion等[ |
Tab.3
Annual and seasonal basin-mean precipitation estimates in the six datasets over the Yarlung Zangbo River and its sub-basins (mm)"
降水产品 | 年均 | 春季 | 夏季 | 秋季 | 冬季 | 降水产品 | 年均 | 春季 | 夏季 | 秋季 | 冬季 |
---|---|---|---|---|---|---|---|---|---|---|---|
拉孜 | 奴各沙—羊村 | ||||||||||
CMA | 325 | 50 | 177 | 60 | 37 | CMA | 385 | 35 | 282 | 66 | 2 |
APHRODITE | 254 | 33 | 152 | 44 | 25 | APHRODITE | 360 | 35 | 256 | 65 | 4 |
PERSIANN-CDR | 739 | 81 | 503 | 105 | 49 | PERSIANN-CDR | 803 | 118 | 527 | 140 | 17 |
GPM | 308 | 59 | 140 | 40 | 68 | GPM | 284 | 35 | 187 | 53 | 9 |
HAR | 466 | 50 | 287 | 68 | 61 | HAR | 495 | 70 | 318 | 96 | 12 |
GLDAS | 721 | 127 | 422 | 115 | 57 | GLDAS | 792 | 82 | 578 | 130 | 2 |
拉孜—奴各沙 | 羊村—奴下 | ||||||||||
CMA | 379 | 26 | 288 | 58 | 7 | CMA | 559 | 97 | 343 | 110 | 9 |
APHRODITE | 314 | 22 | 237 | 51 | 4 | APHRODITE | 537 | 94 | 329 | 103 | 11 |
PERSIANN-CDR | 814 | 104 | 541 | 143 | 27 | PERSIANN-CDR | 1025 | 193 | 609 | 190 | 33 |
GPM | 258 | 26 | 181 | 45 | 6 | GPM | 528 | 110 | 291 | 111 | 15 |
HAR | 545 | 59 | 369 | 101 | 15 | HAR | 719 | 135 | 396 | 161 | 28 |
GLDAS | 789 | 89 | 551 | 129 | 19 | GLDAS | 729 | 106 | 490 | 127 | 6 |
日喀则 | 奴下—巴昔卡 | ||||||||||
CMA | 343 | 27 | 261 | 53 | 2 | CMA | 705 | 177 | 350 | 158 | 20 |
APHRODITE | 328 | 28 | 242 | 55 | 3 | APHRODITE | 981 | 225 | 520 | 204 | 32 |
PERSIANN-CDR | 657 | 96 | 433 | 111 | 16 | PERSIANN-CDR | 883 | 204 | 465 | 177 | 36 |
GPM | 331 | 54 | 214 | 56 | 8 | GPM | 1011 | 263 | 498 | 218 | 32 |
HAR | 328 | 40 | 207 | 71 | 10 | HAR | 1430 | 328 | 657 | 337 | 108 |
GLDAS | 937 | 104 | 666 | 160 | 7 | GLDAS | 828 | 156 | 496 | 157 | 18 |
拉萨 | 雅鲁藏布江 | ||||||||||
CMA | 506 | 62 | 342 | 95 | 8 | CMA | 465 | 73 | 288 | 89 | 15 |
APHRODITE | 504 | 66 | 330 | 99 | 10 | APHRODITE | 500 | 84 | 305 | 96 | 16 |
PERSIANN-CDR | 765 | 122 | 484 | 140 | 19 | PERSIANN-CDR | 773 | 118 | 449 | 183 | 24 |
GPM | 414 | 70 | 246 | 85 | 13 | GPM | 660 | 135 | 400 | 105 | 19 |
HAR | 566 | 50 | 287 | 68 | 61 | HAR | 650 | 106 | 368 | 133 | 39 |
GLDAS | 566 | 55 | 411 | 97 | 3 | GLDAS | 786 | 123 | 509 | 131 | 24 |
Tab.4
Comparisions between precipitation estimates from six precipitation products and the corresponding stations within the grids"
子流域 | 站点 | APHRODITE | GPM | PERSIANN-CDR | GLDAS | HAR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | ||
拉孜 | 拉孜 | 0.57 | 9.00 | 0.88 | -2.03 | 0.57 | 59.51 | 0.38 | 59.01 | 0.60 | -42.27 |
拉孜—奴各沙 | 南木林 | 0.99 | -6.60 | 0.93 | -89.04 | 0.46 | 28.61 | 0.32 | 39.96 | 0.65 | -8.74 |
日喀则 | 日喀则 | 0.99 | -0.11 | 0.87 | -24.50 | 0.57 | 34.47 | 0.54 | 48.66 | 0.26 | -54.61 |
江孜 | 0.98 | 4.65 | 0.98 | 9.99 | 0.68 | 58.07 | 0.46 | 69.62 | 0.63 | -4.40 | |
拉萨 | 拉萨 | 0.99 | -7.71 | -0.14 | -34.29 | 0.17 | 37.23 | 0.47 | 34.43 | 0.21 | -139.09 |
当雄 | 0.93 | -0.77 | 0.89 | -20.13 | 0.42 | 23.28 | 0.62 | 15.83 | 0.25 | 35.88 | |
墨竹工卡 | 0.99 | -26.08 | 0.85 | -70.72 | 0.45 | 23.54 | 0.36 | 20.12 | 0.12 | -52.48 | |
奴各沙—羊村 | 泽当 | 0.99 | 3.44 | 0.88 | -10.57 | 0.39 | 57.02 | 0.54 | 46.46 | 0.19 | -13.82 |
尼木 | 0.94 | -0.39 | 0.89 | -51.80 | 0.87 | 45.24 | 0.65 | 55.20 | 0.20 | -32.65 | |
浪卡子 | 0.99 | 1.08 | 0.93 | 6.61 | 0.67 | 47.97 | 0.45 | 59.91 | 0.20 | 39.57 | |
贡嘎 | 0.88 | -13.44 | 0.89 | -33.30 | 0.45 | 42.21 | 0.47 | 50.70 | 0.15 | 18.15 | |
羊村—奴下 | 加查 | 0.99 | 7.74 | 0.91 | -42.40 | 0.49 | 52.73 | 0.15 | 31.54 | -0.20 | -55.70 |
米林 | 0.99 | -6.60 | 0.70 | 11.38 | 0.79 | 28.07 | 0.38 | 27.32 | 0.35 | -120.23 | |
林芝 | 0.98 | -3.58 | 0.98 | -9.63 | 0.64 | 29.81 | 0.41 | 8.91 | 0.09 | -49.92 | |
奴下—巴昔卡 | 嘉黎 | 0.99 | 6.26 | 0.08 | -34.49 | 0.38 | 29.59 | 0.26 | -19.39 | 0.03 | 18.09 |
波密 | 0.99 | -8.63 | 0.94 | -50.42 | 0.67 | -11.15 | 0.43 | -20.95 | 0.09 | -11.07 |
Tab.5
NSE and bias of VIC simulated streamflow driven by CMA, APHRODITE, GLDAS and PERSIANN-CDR datasets relative to the observations in the sub-basins of the Yarlung Zangbo River, 1980-2000"
子流域 | CMA | APHRODITE | GLDAS | PERSIANN-CDR | ||||
---|---|---|---|---|---|---|---|---|
纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | |
拉孜 | 0.40 | -29.9 | 0.60 | -28.6 | -19.90 | 301.9 | -51.60 | 383.6 |
拉孜—奴各沙 | 0.80 | -29.5 | 0.35 | -49.2 | -0.70 | 170.7 | -1.40 | 130.8 |
日喀则 | 0.50 | -41.7 | 0.20 | -56.3 | -12.70 | 264.8 | -3.30 | 159.2 |
拉萨 | 0.60 | -41.6 | 0.50 | -48.2 | 0.70 | -35.8 | 0.50 | 34.7 |
奴各沙—羊村 | 0.20 | -54.9 | -0.10 | -70.3 | -0.20 | 89.1 | 0.60 | 81.4 |
羊村—奴下 | -0.20 | -69.6 | -0.40 | -76.4 | 0.10 | -53.9 | 0.80 | 5.8 |
[1] |
Duan A M, Wu G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 2005,24(7-8):793-807.
doi: 10.1007/s00382-004-0488-8 |
[2] |
Immerzeel W W, van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010,328:1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[3] |
Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.
doi: 10.1038/NCLIMATE1580 |
[4] | 刘天仇. 雅鲁藏布江水文特征[J]. 地理学报, 1999,54(S1):157-164. |
[ Liu Tianchou. Hydrological characteristics of Yarlung Zangbo River. Acta Geographica Sinica, 1999,54(Sl):157-164. ] | |
[5] |
杨志刚, 卓玛, 路红亚, 等. 1961—2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析[J]. 冰川冻土, 2014,36(1):166-172.
doi: 10.7522/j.issn.1000-0240.2014.0021 |
[ Yang Zhigang, Zhuo Ma, Lu Hongya, et al. Characteristics of precipitation variation and its effects on runoff in the Yarlung Zangbo River basin during 1961-2010. Journal of Glaciology and Geocryology, 2014,36(1):166-172. ] | |
[6] | 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去, 现在与未来[J]. 科学通报, 2015,60(32):3025-3035. |
[ Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 2015,60(32):3025-3035. ] | |
[7] |
Yang W, Guo X F, Yao T D, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research, 2011,116(D14). doi: 10.1029/2010jd015183.
pmid: 24383048 |
[8] |
Chen X N, Long D, Liang S L, et al. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data[J]. Remote Sensing of Environment, 2018,215:284-299.
doi: 10.1016/j.rse.2018.06.021 |
[9] |
Li C H, Su F G, Yang D Q, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 2018,38(2):708-728.
doi: 10.1002/joc.2018.38.issue-2 |
[10] | Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010,115(D9). doi: 10.1029/2009JD012974. |
[11] |
Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013,118(11):5216-5230.
doi: 10.1002/jgrd.50457 |
[12] |
Zhang L L, Su F G, Yang D Q, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013,118(15):8500-8518.
doi: 10.1002/jgrd.50665 |
[13] |
黄浠, 王中根, 桑燕芳, 等. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 2016,35(3):339-348.
doi: 10.18306/dlkxjz.2016.03.008 |
[ Huang Xi, Wang Zhonggen, Sang Yanfang, et al. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin. Progress in Geography, 2016,35(3):339-348. ] | |
[14] |
吕洋, 杨胜天, 蔡明勇, 等. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013,28(8):1414-1425.
doi: 10.11849/zrzyxb.2013.08.014 |
[ Lv Yang, Yang Shengtian, Cai Mingyong, et al. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin. Journal of Natural Resources, 2013,28(8):1414-1425. ] | |
[15] |
郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017,36(8):1033-1039.
doi: 10.18306/dlkxjz.2017.08.012 |
[ Guo Yuhan, Wang Zhonggen, Wu Yuliang. Comparison of applications of different reanalyzed precipitation data in the Lhasa River Basin based on HIMS model. Progress in Geography, 2017,36(8):1033-1039. ] | |
[16] |
Liu J T, Xu Z X, Bai J R, et al. Assessment and correction of the PERSIANN-CDR product in the Yarlung Zangbo River Basin, China[J]. Remote Sensing, 2018,10(12):2031. doi: 10.3390/rs10122031.
doi: 10.3390/rs10122031 |
[17] |
Tong K, Su F G, Yang D Q, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. International Journal of Climatology, 2014,34(2):265-285.
doi: 10.1002/joc.3682 |
[18] | Qi W, Liu J G, Chen D L. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data's applicability for basin scale hydrological simulations in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2018,123(23):13128-13148. |
[19] |
Maussion F, Scherer D, Mölg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis[J]. Journal of Climate, 2014,27(5):1910-1927.
doi: 10.1175/JCLI-D-13-00282.1 |
[20] | Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015,6(1):109-124. |
[21] |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of the American Meteorological Society, 2012,93(9):1401-1415.
doi: 10.1175/BAMS-D-11-00122.1 |
[22] |
Ashouri H, Hsu K, Sorooshian S, et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 2015,96(1):69-83.
doi: 10.1175/BAMS-D-13-00068.1 |
[23] | Huffman G J, Bolvin D T, Braithwaite D, et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) [R]. Algorithm theoretical basis document, Version 4.5. Greenbelt, USA: NASA, 2015. |
[24] |
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004,85(3):381-394.
doi: 10.1175/BAMS-85-3-381 |
[25] |
Caraway N M, McCreight J L, Rajagopalan B. Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling[J]. Journal of Hydrology, 2014,508:197-213.
doi: 10.1016/j.jhydrol.2013.10.054 |
[26] |
Nasseri M, Tavakol-Davani H, Zahraie B. Performance assessment of different data mining methods in statistical downscaling of daily precipitation[J]. Journal of Hydrology, 2013,492:1-14.
doi: 10.1016/j.jhydrol.2013.04.017 |
[27] |
Ver Hoef J M, Temesgen H. A comparison of the spatial linear model to Nearest Neighbor (k-NN) methods for forestry applications[J]. PLoS One, 2013,8(3):e59129. doi: 10.1371/journal.pone.0059129.
pmid: 23527110 |
[28] |
Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A complete daily precipitation database for northeast Spain: Reconstruction, quality control, and homogeneity[J]. International Journal of Climatology, 2009,30(8):1146-1163.
doi: 10.1002/joc.v30:8 |
[29] |
Liang X, Lettenmaie D P, Wood E F, et al. A simple hydrologically based model of land-surface water and energy fluxes[J]. Journal of Geophysical Research: Atmospheres, 1994,99:14415-14428.
doi: 10.1029/94JD00483 |
[30] |
Liang X, Lettenmaie D P, Wood E F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J]. Journal of Geophysical Research: Atmospheres, 1996,101(D16):21403-21422.
doi: 10.1029/96JD01448 |
[31] |
Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper Mississippi River basin[J]. Journal of Geophysical Research: Atmospheres, 1999,104(D16):19599-19610.
doi: 10.1029/1999JD900337 |
[32] |
Kan B Y, Su F G, Xu B Q, et al. Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the upper Yarkant Basin in the Karakoram[J]. Journal of Geophysical Research: Atmospheres, 2018,123(16):8462-8486.
doi: 10.1029/2017JD028055 |
[33] |
Meng F C, Su F G, Li Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019,124(6):2909-2931.
doi: 10.1029/2018JD029552 |
[34] |
Su F G, Zhang L L, Ou T H, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J]. Global and Planetary Change, 2016,136:82-95.
doi: 10.1016/j.gloplacha.2015.10.012 |
[35] |
Tong K, Su F G, Yang D Q, et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J]. Journal of Hydrology, 2014,519:423-437.
doi: 10.1016/j.jhydrol.2014.07.044 |
[36] |
Zhao Q D, Ding Y J, Wang J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019,573:60-81.
doi: 10.1016/j.jhydrol.2019.03.043 |
[37] |
Immerzeel W W, Wanders N, Lutz A F, et al. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff[J]. Hydrology and Earth System Sciences, 2015,19(11):4673-4687.
doi: 10.5194/hess-19-4673-2015 |
[38] | Wortmann M, Bolch T, Menz C, et al. Comparison and correction of high-mountain precipitation data based on Glacio-hydrological modeling in the Tarim River headwaters (high Asia)[J]. Journal of Hydrometeorology, 2018,19(5):777-801. |
|