PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (4): 670-684.doi: 10.18306/dlkxjz.2020.04.014
• Reviews • Previous Articles Next Articles
Received:
2019-03-18
Revised:
2019-09-23
Online:
2020-04-28
Published:
2020-06-28
Contact:
HUANG Chang
E-mail:changh@nwu.edu.cn
Supported by:
SHI Zhuolin, HUANG Chang. Recent advances in remote sensing of river characteristics[J].PROGRESS IN GEOGRAPHY, 2020, 39(4): 670-684.
Tab.1
Parameters and characteristics of some popular optical sensors"
卫星/传感器名称 | 数据起始年份 | 空间分辨率/m | 时间分辨率/d |
---|---|---|---|
NOAA/AVHRR | 1979 | 1100 | 0.5 |
Terra/Aqua MODIS | 1999 | 250~1000 | 0.5 |
Suomi NPP-VIIRS | 2012 | 375~750 | 0.5 |
Landsat MSS/TM/ETM+/OLI | 1972 | 15~80 | 16 |
Sentinel-2 MSI | 2015 | 10~60 | 5 |
ZY-3 | 2012 | 2.1~5.8 | 5 |
Planet CubeSat | 2013 | 3 | <1 |
Tab.2
Some popular water indices and their characteristics"
水体指数 | 计算公式 | 局限性 |
---|---|---|
TCW[ | TCW=0.0315×BLUE+0.2021×GREEN+0.3102×RED+0.1594×NIR- 0.6806×SWIR1-0.6109×SWIR2 | 易受建筑及其阴影影响 |
NDWI[ | NDWI=(GREEN-NIR)/(GREEN+NIR) | 受建筑和山体阴影影响 |
MNDWI[ | MNDWI=(GREEN-SWIR1)/(GREEN+SWIR1) | 建筑物、雪有时被错提为水体 |
AWEI[ | AWEInsh=4×(GREEN-SWIR1)-(0.25×NIR+2.75×SWIR2) AWEIsh=BLUE+2.5×GREEN-1.5×(NIR+SWIR1)-0.25×SWIR2 | 高反射率地表可能被错提为水体,易受建筑噪声影响 |
WI2015[ | WI2015=1.7204+171×GREEN+3×RED-70×NIR-45×SWIR1-71×SWIR2 | 有时不能有效增强水体信息 |
Tab.5
Comparisons of extracting water extent, level, and depth applying optical/microwave sensors"
水文要素 | 光学遥感 | 微波遥感 |
---|---|---|
水体范围 | 优势:易得多种时空分辨率影像,可用于不同尺度的河流研究,数据处理及提取方法较简便。光谱信息丰富,结果可视化程度较高 不足:不适用于夜间观测、天气状况差及云层遮蔽的河流区域 | 优势:可以克服光学传感器易受光线、天气条件影响的不足 不足:SAR影像来源相对较少,处理难度较高,面临地形及建筑阻隔下河流水体提取的精度问题 |
河流水位 | 优势:激光测高应用广泛,数据密度较大,内陆河流水位数据的可用性较强 不足:无法获得较早年份的水位信息 | 优势:可以获得较早年份的水位信息 不足:雷达波束宽度限制观测河宽,仅适用于大型河流水位观测,水位精确反演算法难度较大 |
河流水深 | Lidar及光学遥感反演方法可用于河流水深提取,但需要大量训练数据,且不确定性较高,普适性仍有待研究 | 无法直接获得水深信息,可通过结合水位与水底地形计算水深,但水底地形信息获取难度较大 |
[1] |
Palmer M, Ruhi A . Measuring earth's rivers[J]. Science, 2018,361:546-547.
doi: 10.1126/science.aau3842 pmid: 30093585 |
[2] | Bhavsar P D . Review of remote sensing applications in hydrology and water resources management in India[J]. Advances in Space Research, 1984,4(11):193-200. |
[3] | 宋平, 刘元波, 刘燕春 . 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011,26(7):731-740. |
[ Song Ping, Liu Yuanbo, Liu Yanchun . Advances in satellite retrieval of terrestrial surface water parameters. Advances in Earth Science, 2011,26(7):731-740. ] | |
[4] | Schumann G, Moller D K . Microwave remote sensing of flood inundation[J]. Physics and Chemistry of the Earth, 2015, 83-84:84-95. |
[5] |
Huang C, Chen Y, Zhang S Q , et al. Detecting, extracting, and monitoring surface water from space using optical sensors: A review[J]. Reviews of Geophysics, 2018,56(2):333-360.
doi: 10.1029/2018RG000598 |
[6] |
张国庆 . 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018,37(2):214-223.
doi: 10.18306/dlkxjz.2018.02.004 |
[ Zhang Guoqing . Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations. Progress in Geography, 2018,37(2):214-223. ]
doi: 10.18306/dlkxjz.2018.02.004 |
|
[7] |
Smith L C . Satellite remote sensing of river inundation area, stage, and discharge: A review[J]. Hydrological Processes, 1997,11(10):1427-1439.
doi: 10.1002/(ISSN)1099-1085 |
[8] |
Lyzenga D R . Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978,17(3):379-383.
doi: 10.1364/AO.17.000379 pmid: 20174418 |
[9] | Schumann G, Bates P D, Horritt M S , et al. Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models[J]. Reviews of Geophysics, 2009,47(4). doi: 10.1029/2008RG000274. |
[10] |
Hall A C, Schumann G, Bamber J L , et al. Tracking water level changes of the Amazon Basin with space-borne remote sensing and integration with large scale hydrodynamic modelling: A review[J]. Physics and Chemistry of the Earth, 2011,36(7-8):223-231.
doi: 10.1016/j.pce.2010.12.010 |
[11] | 卢善龙, 吴炳方, 闫娜娜 , 等. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010,25(8):820-826. |
[ Lu Shanlong, Wu Bingfang, Yan Nana , et al. Progress in river runoff monitoring by remote sensing. Advances in Earth Science, 2010,25(8):820-826. ] | |
[12] |
Gholizadeh M H, Melesse A M, Reddi L . A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors (Basel, Switzerland), 2016,16(8). doi: 10.3390/s16081298.
doi: 10.3390/s16081298 pmid: 27537896 |
[13] | Duguay C R, Bernier M, Gauthier Y , et al. Remote sensing of lake and river ice[M]// Tedesco M. Remote sensing of the cryosphere. New York, USA: Wiley, 2014: 273-306. |
[14] |
Sivapalan M . Prediction in ungauged basins: A grand challenge for theoretical hydrology[J]. Hydrological Processes, 2003,17(15):3163-3170.
doi: 10.1002/(ISSN)1099-1085 |
[15] | Ekeu-wei I T, Blackburn G A . Applications of open-access remotely sensed data for flood modelling and mapping in developing regions[J]. Hydrology, 2018,5(3). doi: 10.3390/hydrology5030039. |
[16] |
Barton I J, Bathols J M . Monitoring floods with AVHRR[J]. Remote Sensing of Environment, 1989,30(1):89-94.
doi: 10.1007/s10661-012-2675-0 pmid: 22572801 |
[17] |
Chen Y, Huang C, Ticehurst C , et al. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping[J]. Wetlands, 2013,33(5):823-835.
doi: 10.1007/s13157-013-0439-4 |
[18] | Plumb E . River ice and flood detection products derived from Suomi NPP VIIRS satellite data to support hydrologic forecast operations in Alaska [R]. San Francisco, USA: AGU Fall Meeting, 2015. |
[19] |
Li S, Sun D, Goldberg M D , et al. Automatic near real-time flood detection using Suomi-NPP/VIIRS data[J]. Remote Sensing of Environment, 2018,204:672-689.
doi: 10.1016/j.rse.2017.09.032 |
[20] |
Frazier P, Page K, Louis J , et al. Relating wetland inundation to river flow using Landsat TM data[J]. International Journal of Remote Sensing, 2003,24(19):3755-3770.
doi: 10.1080/0143116021000023916 |
[21] |
Acharya T D, Lee D H, Yang I T , et al. Identification of water bodies in a Landsat 8 OLI image using a J48 decision tree[J]. Sensors (Basel, Switzerland), 2016,16(7). doi: 10.3390/s16071075.
doi: 10.3390/s16071075 pmid: 27420067 |
[22] |
Du Y, Zhang Y, Ling F , et al. Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band[J]. Remote Sensing, 2016,8(4). doi: 10.3390/rs8040354.
doi: 10.3390/rs8040327 pmid: 29629207 |
[23] |
Yao F, Wang C, Dong D , et al. High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery[J]. Remote Sensing, 2015,7(9):12336-12355.
doi: 10.3390/rs70912336 |
[24] | Cooley S, Smith L, Stepan L , et al. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery[J]. Remote Sensing, 2017,9(12). doi: 10.3390/rs9121306. |
[25] | Manavalan P, Sathyanath P, Rajegowda G L . Digital image analysis techniques to estimate waterspread for capacity evaluations of reservoirs[J]. Photogrammetric Engineering and Remote Sensing, 1993,59(9):1389-1395. |
[26] | Ozesmi S L, Bauer M E . Satellite remote sensing of wetlands[J]. Wetlands Ecology and Management, 2002,10(5):381-402. |
[27] | 贾明明, 刘殿伟, 王宗明 , 等. 面向对象方法和多源遥感数据的杭州湾海岸线提取分析[J]. 地球信息科学学报, 2013,15(2):262-269. |
[ Jia Mingming, Liu Dianwei, Wang Zongming , et al. Coastline changes in Hangzhou Bay based on object-oriented method using multi-source remote sensing data. Journal of Geo-information Science, 2013,15(2):262-269. ] | |
[28] | 王航, 秦奋 . 遥感影像水体提取研究综述[J]. 测绘科学, 2018,43(5):23-32. |
[ Wang Hang, Qin Fen . Summary of the research on water body extraction and application from remote sensing image. Science of Surveying and Mapping, 2018,43(5):23-32. ] | |
[29] | Chen Y, Wang B, Pollino C A , et al. Estimate of flood inundation and retention on wetlands using remote sensing and GIS[J]. Ecohydrology, 2014,7(5):1412-1420. |
[30] |
Tulbure M G, Broich M, Stehman S V , et al. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region[J]. Remote Sensing of Environment, 2016,178:142-157.
doi: 10.1016/j.rse.2016.02.034 |
[31] | Mohammadi A, Costelloe J F, Ryu D . Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains[J]. Remote Sensing of Environment, 2017,190:70-82. |
[32] | Fisher A, Flood N, Danaher T . Comparing landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016,175:167-182. |
[33] | 王小标, 谢顺平, 都金康 . 水体指数构建及其在复杂环境下有效性研究[J]. 遥感学报, 2018,22(2):360-372. |
[ Wang Xiaobiao, Xie Shunping, Du Jinkang . Water index formulation and its effectiveness research on the complicated surface water surroundings. Journal of Remote Sensing, 2018,22(2):360-372. ] | |
[34] | 王大钊, 王思梦, 黄昌 . Sentinel-2和Landsat 8的四种常用水体指数地表水体提取对比研究[J]. 国土资源遥感, 2019,31(3):157-165. |
[ Wang Dazhao, Wang Simeng, Huang Chang . A comparison of Sentinel-2 and Landsat 8 imagery for surface water extraction using four water indexes. Remote Sensing for Land and Resources, 2019,31(3):157-165. ] | |
[35] | Crist E P . A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985,17(3):301-306. |
[36] | McFeeters S K . The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432. |
[37] | Xu H Q . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033. |
[38] |
Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140(1):23-35.
doi: 10.1016/j.rse.2013.08.029 |
[39] | Haertel V F, Shimabukuro Y E . Spectral linear mixing model in low spatial resolution image data [R]. Anchorage, USA: IEEE Conference in Anchorage, 2005. |
[40] |
Huang C, Chen Y, Wu J P , et al. An evaluation of Suomi NPP-VIIRS data for surface water detection[J]. Remote Sensing Letters, 2015,6(2):155-164.
doi: 10.1080/2150704X.2015.1017664 |
[41] | 刘晨洲, 施建成, 高帅 , 等. 基于改进混合像元方法的MODIS影像水体提取研究[J]. 遥感信息, 2010(1):84-88. doi: 10.3969/j.issn.1000-3177.2010.01.017. |
[ Liu Chenzhou, Shi Jiancheng, Gao Shuai , et al. The study on extracting of water body from MODIS image using an improved linear mixture model. Remote Sensing Information, 2010(1):84-88. doi: 10.3969/j.issn.1000-3177.2010.01.017.] | |
[42] |
Huang C, Chen Y, Wu J P . DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping[J]. International Journal of Remote Sensing, 2014,35(1):365-381.
doi: 10.1080/01431161.2013.871084 |
[43] | Huang C, Chen Y, Zhang S Q , et al. Spatial downscaling of Suomi NPP-VIIRS image for lake mapping[J]. Water, 2017,9(11). doi: 10.3390/w9110834. |
[44] | 何智勇, 章孝灿, 黄智才 , 等. 一种高分辨率遥感影像水体提取技术[J]. 浙江大学学报(理学版), 2004,31(6):701-707. |
[ He Zhiyong, Zhang Xiaocan, Huang Zhicai , et al. A water extraction technique based on high-spatial remote sensing images. Journal of Zhejiang University (Science Edition), 2004,31(6):701-707. ] | |
[45] | 杨树文, 薛重生, 刘涛 , 等. 一种利用TM影像自动提取细小水体的方法[J]. 测绘学报, 2010,39(6):611-617. |
[ Yang Shuwen, Xue Chongsheng, Liu Tao , et al. A method of small water information automatic extraction from TM remote sensing images. Acta Geodaetica et Cartographica Sinica, 2010,39(6):611-617. ] | |
[46] |
Yang K, Li M C, Liu Y X , et al. River delineation from remotely sensed imagery using a multi-scale classification approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(12):4726-4737.
doi: 10.1109/JSTARS.2014.2309707 |
[47] | 李艳华, 丁建丽, 闫人华 . 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015,37(2):408-416. |
[ Li Yanhua, Ding Jianli, Yan Renhua . Extraction of small river information based on China-made GF-1 remote sense images. Resources Science, 2015,37(2):408-416. ] | |
[48] |
Hsiao Y S, Hwang C, Cheng Y S , et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 2016,176:69-83.
doi: 10.1016/j.rse.2016.01.016 |
[49] |
Chu T, Lindenschmidt K E . Integration of space-borne and air-borne data in monitoring river ice processes in the Slave River, Canada[J]. Remote sensing of environment, 2016,181:65-81.
doi: 10.1016/j.rse.2016.03.041 |
[50] |
Torres R, Snoeij P, Geudtner D , et al. GMES Sentinel-1 mission[J]. Remote Sensing Environment, 2012,120:9-24.
doi: 10.1016/j.rse.2011.05.028 |
[51] |
Brivio P A, Colombo R, Maggi M , et al. Integration of remote sensing data and GIS for accurate mapping of flooded areas[J]. International Journal of Remote Sensing, 2002,23(3):429-441.
doi: 10.1080/01431160010014729 |
[52] |
Bonn F, Dixon R . Monitoring flood extent and forecasting excess runoff risk with RADARSAT-1 data[J]. Natural Hazards, 2005,35(3):377-393.
doi: 10.1007/s11069-004-1798-1 |
[53] | 李晟铭, 刘吉平, 王铭 , 等. 基于Sentinel-1A的2016年长江中下游重灾区洪水遥感监测及灾情评估[J]. 安徽农业科学, 2018,46(10):68-74, 91. |
[ Li Shengming, Liu Jiping, Wang Ming , et al. Flood remote sensing monitoring and disaster assessmenton in heavy disaster area of the middle and lower reaches of Yangtze River in 2016 based on Sentinel-1A imagery. Journal of Anhui Agricultural Science, 2018,46(10):68-74, 91. ] | |
[54] | 李景刚, 黄诗峰, 李纪人 . ENVISAT卫星先进合成孔径雷达数据水体提取研究: 改进的最大类间方差阈值法[J]. 自然灾害学报, 2010,19(3):139-145. |
[ Li Jinggang, Huang Shifeng, Li Jiren . Research on extraction of water body from ENVISAT ASAR images: A modified Otsu Threshold Method. Journal of Natural Disasters, 2010,19(3):139-145. ] | |
[55] | Huang C, Chen Y, Zhang S Q , et al. Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with Landsat data[J]. Remote Sensing, 2016,8(8). doi: 10.3390/rs8080631. |
[56] | Huang C, Nguyen B D, Zhang S Q . A comparison of terrain indices toward their ability in assisting surface water mapping from Sentinel-1 data[J]. ISPRS International Journal of Geo-Information, 2017,6(5). doi: 10.3390/ijgi6050140. |
[57] | Irwin K, Beaulne D, Braun A , et al. Fusion of SAR, optical imagery and airborne LiDAR for surface water detection[J]. Remote Sensing, 2017,9(9). doi: 10.3390/rs9090890. |
[58] |
Slinski K M, Hogue T S, McCray J E . Active-passive surface water classification: A new method for high-resolution monitoring of surface water dynamics[J]. Geophysical Research Letters, 2019,46:4694-4704.
doi: 10.1029/2019GL082562 |
[59] | 卢乃锰, 闵敏, 董立新 , 等. 星载大气探测激光雷达发展与展望[J]. 遥感学报, 2016,20(1):1-10. |
[ Lu Naimeng, Min Min, Dong Lixin , et al. Development and prospect of spaceborne LiDAR for atmospheric detection. Journal of Remote Sensing, 2016,20(1):1-10. ] | |
[60] | 范春波, 李建成, 王丹 , 等. 激光高度计卫星ICESAT在地学研究中的应用[J]. 大地测量与地球动力学, 2005,25(2):94-97. |
[ Fan Chunbo, Li Jiancheng, Wang Dan , et al. Applications of ICESAT to geoscience research. Journal of Geodesy and Geodynamics, 2005,25(2):94-97. ] | |
[61] |
Urban T J, Schutz B E, Neuenschwander A L . A survey of ICESat coastal altimetry applications: Continental coast, open ocean island, and inland river[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008,19(1-2):1-19.
doi: 10.3319/TAO.2008.19.1-2.1(SA) |
[62] |
Markus T, Neumann T, Martino A , et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017,190:260-273.
doi: 10.1016/j.rse.2016.12.029 |
[63] | 葛莉, 习晓环, 王成 , 等. ICESat-1/GLAS数据湖泊水位监测研究进展[J]. 遥感技术与应用, 2017,32(1):14-19. |
[ Ge Li, Xi Xiaohuan, Wang Cheng , et al. Research progress of ICESat-1/GLAS in lake level monitoring. Remote Sensing Technology and Application, 2017,32(1):14-19. ] | |
[64] | 马毅, 张杰, 张靖宇 , 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018,36(3):331-351. |
[ Ma Yi, Zhang Jie, Zhang Jingyu , et al. Progress in shallow water depth mapping from optical remote sensing. Advances in Marine Science, 2018,36(3):331-351. ] | |
[65] |
Wang C K, Philpot W D . Using airborne bathymetric LIDAR to detect bottom type variation in shallow waters[J]. Remote Sensing of Environment, 2007,106(1):123-135.
doi: 10.1016/j.rse.2006.08.003 |
[66] |
田庆久, 王晶晶, 杜心栋 . 江苏近海岸水深遥感研究[J]. 遥感学报, 2007,11(3):373-379.
doi: 10.11834/jrs.20070351 |
[ Tian Qingjiu, Wang Jingjing, Du Xindong . Study on water depth extraction from remote sensing imagery in Jiangsu coastal zone. Journal of Remote Sensing, 2007,11(3):373-379. ]
doi: 10.11834/jrs.20070351 |
|
[67] |
Lyzenga D R . Shallow-water bathymetry using combined LiDAR and passive multispectral scanner data[J]. International Journal of Remote Sensing, 1985,6(1):115-125.
doi: 10.1080/01431168508948428 |
[68] | Su H, Liu H, Wu Q . Prediction of water depth from multispectral satellite imagery: The regression Kriging alternative[J]. IEEE Geoscience & Remote Sensing Letters, 2015,12(12):2511-2515. |
[69] | 陆天启, 陈圣波, 郭甜甜 , 等. 基于SPOT-6遥感影像的近海水深反演[J]. 海洋学研究, 2016,34(3):51-56. |
[ Lu Tianqi, Chen Shengbo, Guo Tiantian , et al. Offshore bathymetry retrieval from SPOT-6 image. Journal of Marine Science, 2016,34(3):51-56. ] | |
[70] | 陈安娜, 马毅, 张靖宇 . 水深被动光学遥感反演模型适用性研究[J]. 海洋环境科学, 2018,37(6):953-959. |
[ Chen Anna, Ma Yi, Zhang Jingyu . Study on applicability of water-depth passive optical remote sensing inversion models. Marine Environmental Science, 2018,37(6):953-959. ] | |
[71] | 陈琛, 马毅, 张靖宇 . GF-1 WFV图像经验模分解的光谱保真性与水深遥感探测[J]. 海洋学报, 2018,40(4):51-60. |
[ Chen Chen, Ma Yi, Zhang Jingyu . Spectral fidelity and water depth remote sensing detection of EMD of GF-1WFV images. Acta Oceanologica Sinica, 2018,40(4):51-60. ] | |
[72] | 黄家柱, 尤玉明 . 长江南通河段卫星遥感水深探测试验[J]. 水科学进展, 2002,13(2):235-238. |
[ Huang Jiazhu, You Yuming . Experiment of water depth surveying in the Nantong section of the Yangtze River. Advances in Water Science, 2002,13(2):235-238. ] | |
[73] | Wagner C . A prograde Geosat exact repeat mission[J]. Journal of the Astronautical Sciences, 1991,39(3):313-326. |
[74] |
Birkett C M . Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands[J]. Water Resources Research, 1998,34:1223-1240.
doi: 10.1029/98WR00124 |
[75] |
Medina C, Gomez-Enri J, Alonso J , et al. Water volume variations in lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products[J]. Journal of Hydrology, 2010,382(1-4):34-48.
doi: 10.1016/j.jhydrol.2009.12.016 |
[76] |
Kleinherenbrink M, Lindenbergh R C, Ditmar P G . Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms[J]. Journal of Hydrology, 2015,521:119-131.
doi: 10.1016/j.jhydrol.2014.11.063 |
[77] |
Villadsen H, Andersen O B, Stenseng L , et al. CryoSat-2 altimetry for river level monitoring: Evaluation in the Ganges-Brahmaputra River basin[J]. Remote Sensing of Environment, 2015,168:80-89.
doi: 10.1016/j.rse.2015.05.025 |
[78] |
Musa Z, Popescu I, Mynett A . A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation[J]. Hydrology and Earth System Sciences, 2015,19:3755-3769.
doi: 10.5194/hess-19-3755-2015 |
[79] |
Koblinsky C J, Clarke R T, Brenner A C , et al. Measurement of river level variations with satellite altimetry[J]. Water Resources Research, 1993,29:1839-1848.
doi: 10.1029/93WR00542 |
[80] | 赵云, 廖静娟, 沈国状 , 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017,21(4):633-644. |
[ Zhao Yun, Liao Jingjuan, Shen Guozhuang , et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data. Journal of Remote Sensing, 2017,21(4):633-644. ] | |
[81] |
Smith L C, Isacks B L, Forster R R , et al. Estimation of discharge from braided glacial rivers using ERS1 synthetic aperture radar: First results[J]. Water Resources Research, 1995,31(5):1325-1329.
doi: 10.1029/95WR00145 |
[82] |
Brakenridge G R, Tracy B T, Knox J C . Orbital SAR remote sensing of a river flood wave[J]. International Journal of Remote Sensing, 1998,19(7):1439-1445.
doi: 10.1080/014311698215559 |
[83] |
Alsdorf D, Birkett C, Dunne T , et al. Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry[J]. Geophysical Research Letters, 2001,28(14):2671-2674.
doi: 10.1029/2001GL012962 |
[84] |
Sichangi A, Wang L, Yang K , et al. Estimating continental river basin discharges using multiple remote sensing datasets[J]. Remote Sensing of Environment, 2016,179:36-53.
doi: 10.1016/j.rse.2016.03.019 |
[85] |
Huang Q, Long D, Du M , et al. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River[J]. Remote Sensing of Environment, 2018,219:115-134.
doi: 10.1016/j.rse.2018.10.008 |
[86] | Brakenridge G R, Nghiem S V, Anderson E , et al. Orbital microwave measurement of river discharge and ice status[J]. Water Resources Research, 2007,43(4). doi: 10.1029/2006WR005238. |
[87] | Brakenridge G R, Nghiem S V, Anderson E , et al. Space-based measurement of river runoff[J]. Eos Transactions American Geophysical Union, 2013,86(19):185-188. |
[88] |
Tarpanelli A, Brocca L, Lacava T , et al. Toward the estimation of river discharge variations using MODIS data in ungauged basins[J]. Remote Sensing of Environment, 2013,136:47-55.
doi: 10.1016/j.rse.2013.04.010 |
[89] |
Bjerklie D M, Dingman S L, Vorosmarty C J , et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology, 2003,278(1):17-38.
doi: 10.1016/S0022-1694(03)00129-X |
[90] | Sichangi A, Wang L, Hu Z . Estimation of river discharge solely from remote-sensing derived data: An initial study over the Yangtze River[J]. Remote Sensing, 2018,10(9). doi: 10.3390/rs10091385. |
[91] |
Bjerklie D M, Birkett C M, Jones J W , et al. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska[J]. Journal of Hydrology, 2018,561:1000-1018.
doi: 10.1016/j.jhydrol.2018.04.005 |
[92] | Leopold L B, Maddock Jr T . The hydraulic geometry of stream channels and some physiographic implications [R]. USGS Professional Paper, 1953. doi: 10.3133/pp252. |
[93] |
Gleason C J, Smith L C, Lee J . Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters[J]. Water Resources Research, 2014,50(12):9604-9619.
doi: 10.1002/2014WR016109 |
[94] |
Gleason C J, Smith L C . Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. PNAS, 2014,111(13):4788-4791.
doi: 10.1073/pnas.1317606111 pmid: 24639551 |
[95] |
Pavelsky T M, Smith L C . RivWidth: A software tool for the calculation of river widths from remotely sensed imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5(1):70-73.
doi: 10.1109/LGRS.2007.908305 |
[96] |
Isikdogan F, Bovik A, Passalacqua P . Automatic channel network extraction from remotely sensed images by singularity analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(11):2218-2221.
doi: 10.1109/LGRS.2015.2458898 |
[97] |
Gorelick N, Hancher M, Dixon M , et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017,202(S3):18-27.
doi: 10.1016/j.rse.2017.06.031 |
[98] |
Isikdogan F, Bovik A, Passalacqua P . RivaMap: An automated river analysis and mapping engine[J]. Remote Sensing Environment, 2017,202(SC):88-97.
doi: 10.1016/j.rse.2017.03.044 |
[99] | Kugler Z, De Groeve T . The global flood detection system [R]. Ispra, Italy: Joint Research Centre Scientific and Technical Reports, 2007. |
[100] | De Groeve T, Brakenridge R G, Paris S . Global flood detection system: Data product specifications [R]. Ispra, Italy: Joint Research Centre Technical Report, 2015. |
[101] |
Khan S I, Hong Y, Gourley J , et al. Multi-sensor imaging and space-ground cross-validation for 2010 flood along Indus River, Pakistan[J]. Remote Sensing, 2014,6(3):2393-2407.
doi: 10.3390/rs6032393 |
[102] | Shi Z L, Huang C . Evaluation of discharge estimation using global flood detection system[C]// IEEE. Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). Hangzhou, China, 2018. |
[103] |
Biancamaria S, Lettenmaier D P, Pavelsky T M . The SWOT mission and its capabilities for land hydrology[J]. Surveys in Geophysics, 2016,37(2):307-337.
doi: 10.1007/s10712-015-9346-y |
[104] |
Hagemann M W, Gleason C J, Durand M T . BAM: Bayesian AMHG-Manning inference of discharge using remotely sensed stream width, slope, and height[J]. Water Resources Research, 2017,53:9692-9707.
doi: 10.1002/2017WR021626 |
[105] |
Brisset P, Monnier J, Garambois P A , et al. On the assimilation of altimetric data in 1D Saint-Venant River flow models[J]. Advances in Water Resources, 2018,119:41-59.
doi: 10.1016/j.advwatres.2018.06.004 |
[106] |
Tuozzolo S, Lind G, Overstreet B , et al. Estimating river discharge with swath altimetry: A proof of concept using AirSWOT observations[J]. Geophysical Research Letters, 2019,46(3):1459-1466.
doi: 10.1029/2018GL080771 |
[107] |
Pitcher L H, Pavelsky T M, Smith L C , et al. AirSWOT InSAR mapping of surface water elevations and hydraulic gradients across the Yukon Flats basin, Alaska[J]. Water Resources Research, 2018,55(2):937-953.
doi: 10.1029/2018WR023274 |
[108] |
Altenau E H, Pavelsky T M, Moller D , et al. Temporal variations in river water surface elevation and slope captured by AirSWOT[J]. Remote Sensing of Environment, 2019,224:304-316.
doi: 10.1016/j.rse.2019.02.002 |
[109] | 庞毓雯, 周斌, 殷守敬 , 等. Ⅱ类水体悬浮泥沙遥感监测技术综述[J]. 杭州师范大学学报(自然科学版), 2016,15(1):108-112. |
[ Pang Yuwen, Zhou Bin, Yin Shoujing , et al. Literature review of suspended sediment remote sensing monitoring technology in case Ⅱ water. Journal of Hangzhou Normal University (Natural Science Edition), 2016,15(1):108-112. ] | |
[110] | 彭翔翼, 沈芳 . 多种卫星传感器反演长江口悬浮泥沙浓度的对比分析[J]. 红外, 2014,35(4):31-37. |
[ Peng Xiangyi, Shen Fang . Comparative analysis of suspended particulate matter concentration in Yangtze estuary derived by several satellite sensors. Infrared, 2014,35(4):31-37. ] | |
[111] |
Holyer R J . Toward universal multispectral suspended sediment algorithms[J]. Remote Sensing Environment, 1978,7:323-338.
doi: 10.1016/0034-4257(78)90023-8 |
[112] | 王皓, 赵冬至, 王林 , 等. 水质遥感研究进展[J]. 海洋环境科学, 2012,31(2):285-288. |
[ Wang Hao, Zhao Dongzhi, Wang Lin , et al. Advance in remote sensing of water quality. Marine Environmental Science, 2012,31(2):285-288. ] | |
[113] | 栾虹, 付东洋, 李明杰 , 等. 基于Landsat 8珠江口悬浮泥沙四季遥感反演与分析[J]. 海洋环境科学, 2017,36(6):892-897. |
[ Luan Hong, Fu Dongyang, Li Mingjie , et al. Based on Landsat 8 suspended sediment concentration of the Pearl River on each season inversion and analysis. Marine Environmental Science, 2017,36(6):892-897. ] | |
[114] |
刘王兵, 于之锋, 周斌 , 等. 杭州湾HJ CCD影像悬浮泥沙遥感定量反演[J]. 遥感学报, 2013,17(4):905-918.
doi: 10.11834/jrs.20132195 |
[ Liu Wangbing, Yu Zhifeng, Zhou Bin , et al. Assessment of suspended sediment concentration at the Hangzhou Bay using HJ CCD imagery. Journal of Remote Sensing, 2013,17(4):905-918. ]
doi: 10.11834/jrs.20132195 |
|
[115] | 胡雯, 杨世植, 翟武全 , 等. NOAA卫星监测巢湖蓝藻水华的试验分析[J]. 环境科学与技术, 2002,25(1):16-17. |
[ Hu Wen, Yang Shizhi, Zhai Wuquan , et al. Application of NOAA satellite for monitoring blue-green algal bloom in Chaohu Lake. Environmental Science and Technology, 2002,25(1):16-17. ] | |
[116] |
徐雯佳, 杨斌, 田力 , 等. 应用MODIS数据反演河北省海域叶绿素a浓度[J]. 国土资源遥感, 2012,24(4):152-156.
doi: 10.6046/gtzyyg.2012.04.25 |
[ Xu Wenjia, Yang Bin, Tian Li , et al. Retrieval of chlorophyll-a concentration by using MODIS data in Hebei sea area. Remote Sensing For Land and Resources, 2012,24(4):152-156. ]
doi: 10.6046/gtzyyg.2012.04.25 |
|
[117] | 罗建美, 霍永伟, 韩晓庆 . 基于HJ卫星的近岸Ⅱ类水体叶绿素a浓度定量遥感反演研究: 以滦河口北部海域为例[J]. 海洋学报, 2017,39(4):117-129. |
[ Luo Jianmei, Huo Yongwei, Han Xiaoqing . Inversion of chlorophyll a concentration in offshore Ⅱ waters using HJ satellite data: Example in the north of the Luanhe Delta. Acta Oceanologica Sinica, 2017,39(4):117-129. ] | |
[118] | 潘梅娥, 杨昆 . 基于环境一号HSI高光谱数据提取叶绿素a浓度的混合光谱分解模型研究[J]. 科学技术与工程, 2017,17(6):71-76. |
[ Pan Mei-e, Yang Kun . Study on spectral unmxing model of chlorophyll-a concentration extraction based on HJ-1 HSI hyperspectral data. Science Technology and Engineering, 2017,17(6):71-76. ] | |
[119] |
Prowse T, Alfredsen K, Beltaos S , et al. Effects of changes in Arctic lake and river ice[J]. AMBIO, 2011,40(S1):63-74.
doi: 10.1007/s13280-011-0217-6 |
[120] | 李辑, 胡春丽, 李菲 , 等. 1981—2009 年辽宁省河流封冻期特征及对气候变暖的响应[J]. 气候变化研究进展, 2011,7(6):418-422. |
[ Li Ji, Hu Chunli, Li Fei , et al. Characters of river's freeze/thaw date and their responses to regional warming in Liaoning Province during 1981-2009. Advances in Climate Change Research, 2011,7(6):418-422. ] | |
[121] |
Prowse T, Alfredsen K, Beltaos S , et al. Arctic freshwater ice and its climatic role[J]. AMBIO, 2011,40(S1):46-52.
doi: 10.1007/s13280-011-0214-9 |
[122] |
魏秋方, 叶庆华 . 湖冰遥感监测方法综述[J]. 地理科学进展, 2010,29(7):803-810.
doi: 10.11820/dlkxjz.2010.07.005 |
[ Wei Qiufang, Ye Qinghua . Review of lake ice monitoring by remote sensing. Progress in Geography, 2010,29(7):803-810. ]
doi: 10.11820/dlkxjz.2010.07.005 |
|
[123] |
Pavelsky T M, Smith L C . Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series[J]. Remote Sensing of Environment, 2004,93:328-338.
doi: 10.1016/j.rse.2004.07.018 |
[124] |
Chaouch N, Temimi M, Romanov P , et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 2014,28:62-73.
doi: 10.1002/hyp.9548 |
[125] | Gauthier Y, Hardy S, Gutiérrez C , et al. IceFRONT: Integration of radar and optical images for operational river freeze-up monitoring [R]. Quebec, Canada: CGU HS Committee on River Ice Processes and the Environment 18thWorkshop on River Ice, 2015. |
[126] |
Gatto L W . Monitoring river ice with landsat images[J]. Remote Sensing of Environment, 1990,32(1):1-16.
doi: 10.1016/0034-4257(90)90094-3 |
[127] |
Unterschultz K, Vander Sanden J, Hicks F . Potential of RADARSAT-1 for the monitoring of river ice: Results of a case study on the Athabasca River at Fort McMurray, Canada[J]. Cold Regions Science and Technology, 2009,55:238-248.
doi: 10.1016/j.coldregions.2008.02.003 |
[128] |
Chu T, Das A, Lindenschmidt K E . Monitoring the variation in ice-cover characteristics of the Slave River, Canada using RADARSAT-2 data: A case study[J]. Remote Sensing, 2015,7(10):13664-13691.
doi: 10.3390/rs71013664 |
[129] | Łoś H, Pawłowski B . The use of sentinel-1 imagery in the analysis of river ice phenomena on the lower vistula in the 2015-2016 winter season [R]. Jachranka Village, Poland: IEEE Signal Processing Symposium, 2017. |
[130] |
Lewis A, Oliver S, Lymburner L , et al. The Australian geoscience data cube: Foundations and lessons learned[J]. Remote Sensing of Environment, 2017,202:276-292.
doi: 10.1016/j.rse.2017.03.015 |
[1] | LAI Xijun. A review of integrated water quality modeling for a watershed [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1123-1135. |
[2] | DUAN Hongtao,LUO Juhua,CAO Zhigang,XUE Kun,XIAO Qitao,LIU Dong. Progress in remote sensing of aquatic environments at the watershed scale [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1182-1195. |
[3] | LI Mingsheng, ZHANG Jianhui, LIANG Nian, LIN Lanyu, LI Qian, WEN Xiangcai. Comparisons of Some Common Methods for Water Environmental Quality Assessment [J]. PROGRESS IN GEOGRAPHY, 2012, 31(5): 617-624. |
[4] | GUO Yansha, WANG Jingfeng, YIN Xiulan. Review of the Optimization Methods for Groundwater Monitoring Network [J]. PROGRESS IN GEOGRAPHY, 2011, 30(9): 1159-1166. |
[5] | LIU Zhenhuan, LI You, PENG Jian. Progress and Perspective of the Research on Hydrological Effects of Urban Impervious Surface on Water Environment [J]. PROGRESS IN GEOGRAPHY, 2011, 30(3): 275-281. |
[6] | HUANG Yaohuan, WANG Hao, XIAO Weihua, QIN Dayong. The Review of Inland Water Environment Monitoring Based on Remote Sensing [J]. PROGRESS IN GEOGRAPHY, 2010, 29(5): 549-556. |
[7] | LIANG Tao, WANG Hao, DING Shi ming, XUE Jin feng, CAI Chun xia, ZHANG Xiu mei. An Evolution of Water Quality in Guanting Reservoir During the Past Three Decades [J]. PROGRESS IN GEOGRAPHY, 2003, 22(1): 38-44. |
[8] | XU Jun, FU Su xing, HUANG Xuan . The Water Quality and Environment Background Remote SensingMapping and Analysis in Jilong River Watershed, Taiwan [J]. PROGRESS IN GEOGRAPHY, 1999, 18(3): 267-273. |
|