PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (12): 1944-1956.doi: 10.18306/dlkxjz.2019.12.010
• Articles • Previous Articles Next Articles
YANG Zhiwei1,2, CHEN Yingbiao1,2,*(), WU Zhifeng1,2, QIAN Qinglan1, HUANG Qingyao1
Received:
2019-02-18
Revised:
2019-03-11
Online:
2019-12-28
Published:
2019-12-28
Contact:
CHEN Yingbiao
E-mail:gzhuchenyb@126.com
Supported by:
YANG Zhiwei, CHEN Yingbiao, WU Zhifeng, QIAN Qinglan, HUANG Qingyao. Spatial variability of urban thermal environment based on natural blocks[J].PROGRESS IN GEOGRAPHY, 2019, 38(12): 1944-1956.
Tab.3
Statistics of the number of land surface heat field levels in natural blocks"
地表热场等级 | 居住区块 | 工业区块 | 商业服务业区块 | 道路与交通区块 | 公共管理与服务区块 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
数量 | 占比/% | 数量 | 占比/% | 数量 | 占比/% | 数量 | 占比/% | 数量 | 占比/% | |||||
Ⅰ 级 | 0 | 0 | 0 | 0 | 22 | 0.03 | 4 | <0.01 | 39 | 0.03 | ||||
Ⅱ 级 | 0 | 0 | 0 | 0 | 1 | <0.01 | 27 | 0.01 | 6 | <0.01 | ||||
Ⅲ 级 | 22 | 0.01 | 0 | 0 | 13 | 0.02 | 96 | 0.05 | 59 | 0.04 | ||||
Ⅳ 级 | 11546 | 7.77 | 430 | 0.43 | 2692 | 3.22 | 12477 | 6.66 | 11401 | 7.34 | ||||
Ⅴ 级 | 98683 | 66.43 | 35868 | 36.16 | 47015 | 56.20 | 118375 | 63.21 | 106785 | 68.78 | ||||
Ⅵ 级 | 37744 | 25.41 | 57604 | 58.07 | 31997 | 38.25 | 54543 | 29.12 | 36144 | 23.28 | ||||
Ⅶ 级 | 553 | 0.37 | 5300 | 5.53 | 1923 | 2.30 | 1755 | 0.94 | 816 | 0.53 |
Tab.4
Statistics of thermal field average value and area in the buffer zones under natural blocks"
缓冲区距离/m | 热场平均值 | ||||
---|---|---|---|---|---|
居住 区块 | 工业 区块 | 商业服务业区块 | 道路与 交通区块 | 公共管理 与服务区块 | |
500 | 5.116 | 5.242 | 5.111 | 5.077 | 4.963 |
1000 | 4.758 | 4.886 | 4.788 | 4.654 | 4.486 |
1500 | 4.518 | 4.679 | 4.581 | 4.405 | 4.231 |
2000 | 4.369 | 4.558 | 4.465 | 4.268 | 4.087 |
2500 | 4.287 | 4.505 | 4.365 | 4.154 | 3.938 |
3000 | 4.193 | 4.428 | 4.254 | 4.061 | 3.822 |
3500 | 4.131 | 4.324 | 4.149 | 4.008 | 3.689 |
4000 | 4.053 | 4.261 | 4.091 | 3.937 | 3.611 |
4500 | 4.016 | 4.219 | 4.056 | 3.911 | 3.589 |
5000 | 3.983 | 4.192 | 4.051 | 3.834 | 3.487 |
[1] |
陈超, 周广胜 . 2013. 1961—2010年桂林气温和地温的变化特征[J]. 生态学报, 33(7):2043-2053.
doi: 10.5846/stxb201112312022 |
[ Chen C, Zhou G S . 2013. Analysis on variation characteristics of air temperature and ground temperature in Guilin from 1961 to 2010. Acta Ecologica Sinica, 33(7):2043-2053. ]
doi: 10.5846/stxb201112312022 |
|
[2] | 陈康林, 龚建周, 陈晓越 , 等. 2016. 广州城市绿色空间与地表温度的格局关系研究[J]. 生态环境学报, 25(5):842-849. |
[ Chen K L, Gong J Z, Chen X Y . 2016. The pattern relationship research of green space and surface temperature in Guangzhou City. Ecology and Environmental Sciences, 25(5):842-849. ] | |
[3] |
陈世莉, 李郇, 赖安琪 , 等. 2017. 广佛同城化发展的热岛效应研究[J]. 地理科学进展, 36(6):720-731.
doi: 10.18306/dlkxjz.2017.06.007 |
[ Chen S L, Li X, Lai A Q , et al. 2017. Guangzhou-Foshan urban integration and its urban heat island effects. Progress in Geography, 36(6):720-731. ]
doi: 10.18306/dlkxjz.2017.06.007 |
|
[4] | 陈松林, 王天星 . 2009. 等间距法和均值-标准差法界定城市热岛的对比研究[J]. 地球信息科学学报, 11(2):145-150. |
[ Chen S L, Wang T X . 2009. Comparison analyses of equal interval method and mean-standard deviation method used to delimitate urban heat island. Journal of Geo-information Science, 11(2):145-150. ] | |
[5] |
陈蔚珊, 柳林, 梁育填 . 2016. 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析[J]. 地理研究, 35(4):703-716.
doi: 10.11821/dlyj201604009 |
[ Chen W S, Liu L, Liang Y T . 2016. Retail center recognition and spatial aggregating feature analysis of retail formats in Guangzhou based on POI data. Geographical Research, 35(4):703-716. ]
doi: 10.11821/dlyj201604009 |
|
[6] |
关雪峰, 曾宇媚 . 2018. 时空大数据背景下并行数据处理分析挖掘的进展及趋势[J]. 地理科学进展, 37(10):1314-1327.
doi: 10.18306/dlkxjz.2018.10.002 |
[ Guan X F, Zeng Y M . 2018. Research progress and trends of parallel processing, analysis, and mining of big spatiotemporal data. Progress in Geography, 37(10):1314-1327. ]
doi: 10.18306/dlkxjz.2018.10.002 |
|
[7] | 郭冠华, 吴志峰, 刘晓南 . 2015. 城市热环境季相变异及与非渗透地表的定量关系分析: 以广州市中心区为例[J]. 生态环境学报, 24(2):270-277. |
[ Guo G H, Wu Z F, Liu X N . 2015. Seasonal variations of urban heat environment and its relationship to impervious surface: A case study of Guangzhou core urban area. Ecology and Environmental Sciences, 24(2):270-277. ] | |
[8] |
浩飞龙, 王士君, 冯章献 , 等. 2018. 基于POI数据的长春市商业空间格局及行业分布[J]. 地理研究, 37(2):366-378.
doi: 10.11821/dlyj201802010 |
[ Hao F L, Wang S J, Feng Z X , et al. 2018. Spatial pattern and its industrial distribution of commercial space in Changchun based on POI data. Geographical Research, 37(2):366-378. ]
doi: 10.11821/dlyj201802010 |
|
[9] |
李元征, 尹科, 周宏轩 , 等. 2016. 基于遥感监测的城市热岛研究进展[J]. 地理科学进展, 35(9):1062-1074.
doi: 10.18306/dlkxjz.2016.09.002 |
[ Li Y Z, Yin K, Zhou H X , et al. 2016. Progress in urban heat island monitoring by remote sensing. Progress in Geography, 35(9):1062-1074. ]
doi: 10.18306/dlkxjz.2016.09.002 |
|
[10] |
廖伟华, 聂鑫 . 2017. 基于大数据的城市服务业空间关联分析[J]. 地理科学, 37(9):1310-1317.
doi: 10.13249/j.cnki.sgs.2017.09.003 |
[ Liao W H, Nie X . 2017. Spatial association analysis for urban service based on big data. Scientia Geographica Sinica, 37(9):1310-1317. ]
doi: 10.13249/j.cnki.sgs.2017.09.003 |
|
[11] |
刘嘉慧, 赵小锋, 林剑艺 . 2018. 基于地表能量平衡的厦门岛城市功能区人为热排放分析[J]. 地球信息科学学报, 20(7):1026-1036.
doi: 10.12082/dqxxkx.2018.170450 |
[ Liu J H, Zhao X F, Lin J Y . 2018. Analysis of anthropogenic heat discharge of urban functional regions based on surface energy balance in Xiamen Island. Journal of Geo-information Science, 20(7):1026-1036. ]
doi: 10.12082/dqxxkx.2018.170450 |
|
[12] |
彭文甫, 周介铭, 罗怀良 , 等. 2011. 城市土地利用与地面热效应时空变化特征的关系: 以成都市为例[J]. 自然资源学报, 26(10):1738-1749.
doi: 10.11849/zrzyxb.2011.10.010 |
[ Peng W F, Zhou J M, Luo H L , et al. 2011. Relationship between urban land use and spatio-temporal change characteristics of surface heat effect: A case study of Chengdu City. Jouranl of Natural Resources, 26(10):1738-1749. ]
doi: 10.11849/zrzyxb.2011.10.010 |
|
[13] |
钱乐祥, 丁圣彦 . 2005. 珠江三角洲土地覆盖变化对地表温度的影响[J]. 地理学报, 60(5):761-770.
doi: 10.11821/xb200505007 |
[ Qian L X, Ding S Y . 2005. Influence of land cover change on land surface temperature in Zhujiang Delta. Acta Geographica Sinica, 60(5):761-770. ]
doi: 10.11821/xb200505007 |
|
[14] |
覃志豪 , Li Wenjuan, Zhang Minghua, 等. 2003. 单窗算法的大气参数估计方法[J]. 国土资源遥感, 15(2):37-43.
doi: 10.6046/gtzyyg.2003.02.10 |
[ Qin Z H, Li W J, Zhang M H , et al. 2003. Estimating of the essential atmospheric parameters of Mono-Window algorithm for land surface temperature retrieval from Landsat TM6. Remote Sensing for Land & Resources, 15(2):37-43. ]
doi: 10.6046/gtzyyg.2003.02.10 |
|
[15] | 覃志豪 , Zhang Minghua, Arnon K, 等. 2001. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 56(4):456-466. |
[ Qin Z H, Zhang M H, Arnon K , et al. 2001. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geographica Sinica, 56(4):456-466. ] | |
[16] |
孙然好, 王业宁, 陈婷婷 . 2017. 人为热排放对城市热环境的影响研究展望[J]. 生态学报, 37(12):3991-3997.
doi: 10.5846/stxb201611182342 |
[ Sun R H, Wang Y N, Chen T T . 2017. Impacts of anthropogenic heat emissions on urban thermal environment: A review. Acta Ecologica Sinica, 37(12):3991-3997. ]
doi: 10.5846/stxb201611182342 |
|
[17] | 王琳, 徐涵秋, 李胜 . 2018. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 33(3):387-397. |
[ Wang L, Xu H Q, Li S . 2018. Effects of relocation of Chongqing iron and steel group industrial area on regional ecological quality. Remote Sensing Technology and Application, 33(3):387-397. ] | |
[18] |
徐智邦, 周亮, 蓝婷 , 等. 2018. 基于POI数据的巨型城市消防站空间优化: 以北京市五环内区域为例[J]. 地理科学进展, 37(4):535-546.
doi: 10.18306/dlkxjz.2018.04.009 |
[ Xu Z B, Zhou L, Lan T , et al. 2018. Spatial optimization of mega-city fire station distribution based on Point of Interest data: A case study within the 5th Ring Road in Beijing. Progress in Geography, 37(4):535-546. ]
doi: 10.18306/dlkxjz.2018.04.009 |
|
[19] |
许泽宁, 高晓路 . 2016. 基于电子地图兴趣点的城市建成区边界识别方法[J]. 地理学报, 71(6):928-939.
doi: 10.11821/dlxb201606003 |
[ Xu Z N, Gao X L . 2016. A novel method for identifying the boundary of urban built-up areas with POI data. Acta Geographica Sinica, 71(6):928-939. ]
doi: 10.11821/dlxb201606003 |
|
[20] | 杨敏, 杨贵军, 王艳杰 , 等. 2018. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 30(3):213-223. |
[ Yang M, Yang G J, Wang Y J , et al. 2018. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing. Remote Sensing for Land & Resources, 30(3):213-223. ] | |
[21] |
杨智威, 陈颖彪, 吴志峰 , 等. 2018. 粤港澳大湾区建设用地扩张与城市热岛扩张耦合态势研究[J]. 地球信息科学学报, 20(11):1592-1603.
doi: 10.12082/dqxxkx.2018.180242 |
[ Yang Z W, Chen Y B, Wu Z F , et al. 2018. The coupling between construction land expansion and urban heat island expansion in Guangdong-Hong Kong-Macao Greater Bay. Journal of Geo- information Science, 20(11):1592-1603. ]
doi: 10.12082/dqxxkx.2018.180242 |
|
[22] | 张棋斐, 文雅, 吴志峰 , 等. 2018. 高密度建成区湖泊水体的热缓释效应及其季相差异: 以广州市中心城区为例[J]. 生态环境学报, 27(7):1323-1334. |
[ Zhang Q F, Wen Y, Wu Z F , et al. 2018. Seasonal variations of the cooling effect of water landscape in high-density urban built-up area: A case study of the center urban district of Guangzhou. Ecology and Environmental Sciences, 27(7):1323-1334. ] | |
[23] | 祝新明, 王旭红, 周永芳 , 等. 2017. 建成区扩张下的西安市热环境空间分异性[J]. 生态学杂志, 36(12):3574-3583. |
[ Zhu X M, Wang X H, Zhou Y F , et al. Spatial variability of thermal environment in Xi'an under the build-up area expansion. Chinese Journal of Ecology, 36(12):3574-3583. ] | |
[24] |
Barsi J, Schott J, Hook S , et al. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration[J]. Remote Sensing, 6(11):11607-11626.
doi: 10.3390/rs61111607 |
[25] |
Bokaie M, Zarkesh M K, Arasteh P D , et al. 2016. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran[J]. Sustainable Cities & Society, 23:94-104.
doi: 10.1016/j.jenvman.2019.109575 pmid: 31870511 |
[26] |
Butler D . 2007. Energy efficiency: Super savers: Meters to manage the future[J]. Nature, 445:586. doi: 10.1038/445586a.
doi: 10.1038/445586a pmid: 17287788 |
[27] |
Estoque R C, Murayama Y, Myint S W . 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 577:349-359.
doi: 10.1016/j.scitotenv.2016.10.195 pmid: 27832866 |
[28] |
Jiang B . 2013. Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution[J]. Professional Geographer, 65(3):482-494.
doi: 10.1080/00330124.2012.700499 |
[29] |
Jiang B . 2015. Head/tail breaks for visualization of city structure and dynamics[J]. Cities, 43(3):69-77.
doi: 10.1016/j.cities.2014.11.013 |
[30] |
Jiang B, Jia T . 2011. Zipf''s law for all the natural cities in the United States: A geospatial perspective[J]. International Journal of Geographical Information Science, 25(8):1269-1281.
doi: 10.1080/13658816.2010.510801 |
[31] |
Jiang B, Liu X T . 2012. Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information[J]. International Journal of Geographical Information Science, 26(2):215-229.
doi: 10.1080/13658816.2011.575074 |
[32] |
Jiang B, Ma D . 2018. How complex is a fractal? Head/tail breaks and fractional hierarchy[J]. Journal of Geovisualization & Spatial Analysis, 2(1):6. doi: 10.1007/s41651-017-0009-z.
doi: 10.1007/s10916-019-1493-0 pmid: 31823031 |
[33] |
Keeratikasikorn C, Bonafoni S . 2018. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery[J]. Remote Sensing, 10(3):440. doi: 10.3390/rs10030440.
doi: 10.3390/rs10030440 |
[34] |
Long Y, Zhai W X, Shen Y , et al. 2018. Understanding uneven urban expansion with natural cities using open data[J]. Landscape and Urban Planning, 177:281-293.
doi: 10.1016/j.landurbplan.2017.05.008 |
[35] |
Miao Y F . 2015. The evolution of natural cities from the perspective of location-based social media[J]. Professional Geographer, 67(2):295-306.
doi: 10.1080/00330124.2014.968886 |
[36] |
Mohan M, Kandya A . 2015. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data[J]. Science of the Total Environment, 506:453-465.
doi: 10.1016/j.scitotenv.2014.11.006 pmid: 25437763 |
[37] |
Rao Y H, Xu Y, Zhang J J , et al. 2018. Does subclassified industrial land have a characteristic impact on land surface temperatures? Evidence for and implications of coal and steel processing industries in a Chinese mining city[J]. Ecological Indicators, 89:22-34.
doi: 10.1016/j.ecolind.2018.01.058 |
[38] |
Wang C Y, Myint S, Wang Z H , et al. 2016. Spatio-temporal modeling of the urban heat island in the Phoenix Metropolitan area: Land use change implications[J]. Remote Sensing, 8(3):185. doi: 10.3390/rs8030185.
doi: 10.3390/rs8030185 |
[39] |
Wang F, Qin Z H, Song C Y , et al. 2015. An improved Mono-Window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data[J]. Remote Sensing, 7(4):4268-4289.
doi: 10.3390/rs70404268 |
[40] |
Wu W J, Zhao H R, Jiang S L . 2018. A Zipf's law-based method for mapping urban areas using NPP-VIIRS nighttime light data[J]. Remote Sensing, 10(1):130. doi: 10.3390/rs10010130.
doi: 10.3390/rs10010130 |
[41] |
Xiong Y Z, Huang S P, Chen F , et al. 2012. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China[J]. Remote Sensing, 4(7):2033-2056.
doi: 10.3390/rs4072033 |
[42] |
Zhou D C, Zhao S Q, Zhang L X , et al. 2015. The footprint of urban heat island effect in China[J]. Scientific Reports, 5:11160. doi: 10.1038/srep11160.
doi: 10.1038/srep11160 pmid: 26060039 |
|