PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (12): 1876-1889.doi: 10.18306/dlkxjz.2019.12.005
• Articles • Previous Articles Next Articles
ZHANG Yanji1, ZHU Chunwu2,*(), QIN Bo2
Received:
2018-12-18
Revised:
2019-05-31
Online:
2019-12-28
Published:
2019-12-28
Contact:
ZHU Chunwu
E-mail:zhuchunwu@ruc.edu.cn
Supported by:
ZHANG Yanji, ZHU Chunwu, QIN Bo. Spatial distribution of crime number and harm and the influence of the built environment: A longitudinal research on criminal cases in Beijing[J].PROGRESS IN GEOGRAPHY, 2019, 38(12): 1876-1889.
Tab.1
Descriptive statistics of variables"
变量 | 释义 | 均值 | 标准差 | |||||
---|---|---|---|---|---|---|---|---|
2013年 | 2015年 | 2017年 | 2013年 | 2015年 | 2017年 | |||
被解释变量 | ||||||||
所有犯罪的发生数量 | 单位:起 | 0.75 | 0.96 | 0.72 | 2.23 | 2.93 | 2.27 | |
所有犯罪的危害程度 | 单位:月 | 12.06 | 12.61 | 8.43 | 48.56 | 54.66 | 40.13 | |
盗窃犯罪的发生数量 | 单位:起 | 0.30 | 0.44 | 0.37 | 1.04 | 1.54 | 1.30 | |
盗窃犯罪的危害程度 | 单位:月 | 3.59 | 3.87 | 3.07 | 15.77 | 14.86 | 12.10 | |
暴力犯罪的发生数量 | 单位:起 | 0.45 | 0.52 | 0.36 | 1.48 | 1.70 | 1.24 | |
暴力犯罪的危害程度 | 单位:月 | 8.47 | 8.75 | 5.37 | 41.53 | 47.44 | 35.25 | |
解释变量 | ||||||||
POI密度 | 单位:个/km2 | 108.18 | 165.08 | 227.44 | 272.75 | 434.77 | 521.42 | |
POI熵指数 | 1.51 | 1.51 | 1.72 | 0.74 | 0.76 | 0.68 | ||
主干道密度 | 单位:km/km2 | 0.65 | 0.67 | 0.70 | 0.95 | 0.96 | 0.98 | |
次干道支路密度 | 单位:km/km2 | 1.88 | 2.04 | 2.19 | 2.04 | 2.12 | 2.20 | |
到地铁站的最短距离 | 单位:km | 10.35 | 9.58 | 8.73 | 8.36 | 8.25 | 8.18 | |
公交站POI比重 | S41类POI占总POI之比 | 0.06 | 0.06 | 0.05 | 0.12 | 0.11 | 0.08 | |
居住类POI比重 | R21、R21、R31类POI占总POI之比 | 0.08 | 0.08 | 0.07 | 0.16 | 0.12 | 0.11 | |
零售批发类POI比重 | B11、B12类POI占总POI之比 | 0.12 | 0.14 | 0.17 | 0.14 | 0.15 | 0.15 | |
餐饮类POI比重 | B13类POI占总POI之比 | 0.07 | 0.08 | 0.06 | 0.10 | 0.10 | 0.07 | |
旅馆类POI比重 | B14类POI占总POI之比 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | 0.03 | |
商务办公类POI比重 | B21、B22、B29类POI占总POI之比 | 0.14 | 0.18 | 0.21 | 0.20 | 0.16 | 0.18 | |
停车场POI比重 | S42类POI占总POI之比 | 0.02 | 0.02 | 0.03 | 0.05 | 0.05 | 0.06 | |
教育科研类POI比重 | A3类POI占总POI之比 | 0.02 | 0.02 | 0.02 | 0.07 | 0.05 | 0.05 | |
医疗卫生类POI比重 | A5类POI占总POI之比 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.02 | |
工业类POI比重 | M类POI占总POI之比 | 0.02 | 0.02 | 0.02 | 0.06 | 0.06 | 0.05 | |
公园广场类POI比重 | G类POI占总POI之比 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.03 | |
混淆变量 | ||||||||
房屋平均单价 | 单位:万元 | 1.64 | 1.97 | 3.73 | 1.19 | 1.17 | 1.99 | |
到派出所的最短距离 | 单位:km | 3.11 | 2.99 | 2.88 | 1.95 | 1.94 | 2.01 |
Tab.2
Spatial pattern of criminal activities"
类型 | 年份 | 犯罪发生数量 | 犯罪危害程度 | |||||
---|---|---|---|---|---|---|---|---|
累积25%犯罪数量 的方格网比重/% | 累积50%犯罪数量的方格网比重/% | Moran's I | 累积25%犯罪危害程 度得分的方格网比重/% | 累积50%犯罪危害程度得分的方格网比重/% | Moran's I | |||
所有犯罪 | 2013 | 1.31 | 3.92 | 0.368*** | 0.78 | 2.64 | 0.204*** | |
2015 | 1.22 | 3.82 | 0.332*** | 0.65 | 2.49 | 0.136*** | ||
2017 | 1.14 | 3.79 | 0.296*** | 0.48 | 2.36 | 0.123*** | ||
盗窃犯罪 | 2013 | 1.03 | 2.97 | 0.416*** | 0.61 | 1.88 | 0.295*** | |
2015 | 0.94 | 3.01 | 0.348*** | 0.78 | 2.38 | 0.307*** | ||
2017 | 0.90 | 2.83 | 0.334*** | 0.74 | 2.31 | 0.272*** | ||
暴力犯罪 | 2013 | 1.13 | 3.66 | 0.224*** | 0.52 | 2.01 | 0.111*** | |
2015 | 1.11 | 3.71 | 0.228*** | 0.39 | 1.70 | 0.065*** | ||
2017 | 1.03 | 3.55 | 0.176*** | 0.22 | 1.35 | 0.055*** |
Tab.3
Regression results of built environment to criminal activities"
变量 | 模型1: | 模型2: | 模型3: | 模型4: | 模型5: | 模型6: |
---|---|---|---|---|---|---|
所有犯罪的 发生数量 | 所有犯罪的 危害程度 | 盗窃犯罪的 发生数量 | 盗窃犯罪的 危害程度 | 暴力犯罪的 发生数量 | 暴力犯罪的 危害程度 | |
POI密度 | 0.092*** | 0.286*** | 0.027 | 0.268*** | 0.135*** | 0.255*** |
POI熵指数 | 0.204*** | 0.276*** | 0.049 | 0.118** | 0.295*** | 0.266*** |
主干道密度 | -0.022 | 0.037* | -0.017 | 0.011 | -0.073 | 0.021 |
次干道支路密度 | 0.006 | 0.094*** | 0.062 | 0.015 | -0.011 | 0.109*** |
到地铁站的最短距离 | -0.121 | -0.207*** | -0.082 | -0.343*** | -0.123 | -0.098 |
公交站POI比重 | 0.075 | -0.074 | 0.004 | -0.070 | 0.076 | 0.013 |
居住类POI比重 | 0.095*** | 0.093*** | 0.091** | 0.086** | 0.085*** | 0.076** |
零售批发类POI比重 | 0.155*** | 0.120*** | 0.299*** | 0.178*** | 0.053 | 0.038 |
餐饮类POI比重 | 0.143*** | 0.131*** | 0.148*** | 0.125*** | 0.161*** | 0.151*** |
旅馆类POI比重 | 0.077** | 0.070* | 0.110** | 0.111** | 0.060 | 0.058 |
商务办公类POI比重 | 0.152*** | 0.026 | 0.176** | 0.118 | 0.134** | 0.010 |
停车场POI比重 | -0.063 | -0.065* | 0.049 | 0.063 | -0.184*** | -0.128*** |
教育科研类POI比重 | 0.076 | 0.063 | 0.004 | 0.007 | 0.126** | 0.022 |
医疗卫生类POI比重 | 0.114*** | 0.078*** | 0.187*** | 0.136** | 0.075* | 0.043 |
工业类POI比重 | 0.105** | 0.051 | 0.117* | -0.027 | 0.089* | 0.088 |
公园广场类POI比重 | -0.073 | -0.093 | -0.056 | -0.109 | -0.080 | -0.019 |
房屋单价均值 | -0.053 | 0.092*** | -0.081 | 0.088** | 0.007 | 0.053 |
到派出所的最短距离 | 0.017 | 0.260*** | 0.094 | 0.213*** | 0.161* | 0.199*** |
常数 | 1.724*** | -2.270*** | 1.415*** | -2.585*** | 1.563*** | -2.468*** |
Wald chi2(18) | 124.43 | 1325.63 | 66.42 | 623.70 | 134.28 | 683.60 |
Prob>chi2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Tab.4
Regression results of built environment to criminal activities considered spatially lagged variables"
变量 | 模型7: | 模型8: | 模型9: | 模型10: | 模型11: | 模型12: |
---|---|---|---|---|---|---|
所有犯罪的 发生数量 | 所有犯罪的 危害程度 | 盗窃犯罪的 发生数量 | 盗窃犯罪的 危害程度 | 暴力犯罪的 发生数量 | 暴力犯罪的 危害程度 | |
POI密度 | 0.089** | 0.263*** | 0.038 | 0.224*** | 0.149*** | 0.210*** |
POI密度的空间滞后项 | 0.012 | 0.192*** | -0.043 | 0.203*** | -0.010 | 0.086* |
POI熵指数 | 0.136** | 0.179*** | 0.043 | 0.136* | 0.362** | 0.457*** |
POI熵指数的空间滞后项 | 0.109 | 0.151 | 0.035 | 0.007 | 0.223*** | 0.192*** |
主干道密度 | -0.037 | 0.003 | -0.021 | -0.010 | -0.078 | -0.021 |
主干道密度的空间滞后项 | -0.161 | -0.002 | -0.383** | -0.120** | -0.098 | 0.094 |
次干道支路密度 | -0.024 | 0.080** | 0.021 | 0.009 | -0.023 | 0.124* |
次干道支路密度的空间滞后项 | 0.161 | -0.064 | 0.314 | -0.088 | 0.047 | 0.085* |
到地铁站的最短距离 | -0.093 | -0.072 | -0.061 | -0.156 | -0.081 | 0.006 |
公交站点POI比重 | 0.023 | -0.034 | -0.004 | -0.039 | 0.013 | -0.009 |
公交站点POI比重的空间滞后项 | 0.321*** | -0.047 | 0.417** | 0.229 | 0.233** | 0.049 |
居住类POI比重 | 0.036 | 0.046 | 0.048 | 0.029 | 0.012 | 0.005 |
居住类POI比重的空间滞后项 | 0.173*** | 0.119** | 0.182** | 0.184** | 0.148** | 0.111* |
零售批发类POI比重 | 0.242** | 0.122*** | 0.447*** | 0.269*** | 0.021 | 0.031 |
零售批发类POI比重的空间滞后项 | 0.085*** | 0.075 | 0.179*** | 0.111* | 0.079 | 0.107 |
餐饮类POI比重 | 0.110** | 0.150*** | 0.138* | 0.079* | 0.154** | 0.122** |
餐饮类POI比重的空间滞后项 | 0.076** | 0.097** | 0.067 | 0.095 | 0.083** | 0.093** |
旅馆类POI比重 | 0.048 | 0.041 | 0.067 | 0.047 | 0.041 | 0.030 |
旅馆类POI比重的空间滞后项 | 0.096 | 0.116* | 0.125 | 0.312*** | 0.089 | 0.167** |
商务办公类POI比重 | 0.137** | 0.021 | 0.143* | 0.067 | 0.147** | 0.006 |
商务办公类POI比重的空间滞后项 | 0.096 | -0.049 | 0.178 | 0.199 | 0.052 | -0.091 |
停车场POI比重 | -0.030 | -0.082* | 0.066 | 0.047 | -0.095 | -0.076 |
停车场POI比重的空间滞后项 | 0.061 | 0.164** | 0.034 | 0.055 | -0.023 | -0.025 |
教育科研类POI比重 | 0.056 | 0.034 | 0.034 | -0.022 | 0.083 | -0.012 |
教育科研类POI比重的空间滞后项 | 0.046 | 0.170** | -0.127 | 0.070 | 0.147 | 0.187** |
医疗卫生类POI比重 | 0.087** | 0.065** | 0.160*** | 0.118** | 0.054 | 0.031 |
医疗卫生类POI比重的空间滞后项 | 0.161*** | 0.063 | 0.075 | 0.069 | 0.204*** | 0.172** |
工业类POI比重 | 0.098** | 0.065 | 0.105 | -0.006 | 0.226** | 0.081 |
工业类POI比重的空间滞后项 | 0.069 | 0.113 | 0.051 | 0.110 | 0.040 | 0.080 |
公园广场类POI比重 | -0.083 | -0.126* | -0.105 | -0.164 | -0.084 | -0.028 |
公园广场类POI比重的空间滞后项 | 0.135* | 0.145* | 0.220* | 0.293** | 0.089 | 0.052 |
房屋单价均值 | -0.071 | 0.122* | -0.087 | 0.218** | 0.004 | 0.130** |
到派出所的最短距离 | 0.046 | 0.192*** | 0.078 | 0.120 | 0.205** | 0.146*** |
常数 | 1.694*** | -2.220*** | 1.257*** | -2.562*** | 1.726*** | -2.412*** |
Wald chi2(18) | 172.14 | 1341.31 | 109.19 | 640.47 | 165.95 | 716.92 |
Prob>chi2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
[1] |
龙冬平, 柳林, 周素红 , 等. 2017. 地理学视角下犯罪者行为研究进展[J]. 地理科学进展, 36(7):886-902.
doi: 10.18306/dlkxjz.2017.07.010 |
[ Long D P, Liu L, Zhou S H , et al. 2017. Research progress of criminal behavior from the perspective of geography. Progress in Geography, 36(7):886-902. ]
doi: 10.18306/dlkxjz.2017.07.010 |
|
[2] |
宋伟轩, 毛宁, 陈培阳 , 等. 2017. 基于住宅价格视角的居住分异耦合机制与时空特征: 以南京为例[J]. 地理学报, 72(4):589-602.
doi: 10.11821/dlxb201704003 |
[ Song W X, Mao N, Chen P Y , et al. 2017. Coupling mechanism and spatial-temporal pattern of residential differentiation from the perspective of housing prices: A case study of Nanjing. Acta Geographica Sinica, 72(4):589-602. ]
doi: 10.11821/dlxb201704003 |
|
[3] | 徐冰, 贺耀萱 . 2014. 英国居住空间形态与犯罪的关系研究综述: 基于空间句法量化分析方法的典型建构[J]. 城市规划, 38(10):91-94. |
[ Xu B, He Y X . 2014. An overview of studies on the relationship between residential spatial form and crime in the United Kingdom: The quantitative analysis method based on space syntax. City Planning Review, 38(10):91-94. ] | |
[4] |
徐冲, 柳林, 周素红 . 2015. DP半岛街头抢劫案件的临近重复发生模式[J]. 地理研究, 34(2):384-394.
doi: 10.11821/dlyj201502017 |
[ Xu C, Liu L, Zhou S H . 2015. Patterns of near-repeat street robbery in DP Peninsula. Geographical Research, 34(2):384-394. ]
doi: 10.11821/dlyj201502017 |
|
[5] |
张宁, 王大为 . 2018. 基于风险地形建模的毒品犯罪风险评估和警务预测[J]. 地理科学进展, 37(8):1131-1139.
doi: 10.18306/dlkxjz.2018.08.012 |
[ Zhang N, Wang D W . 2018. Drug-related crime risk assessment and predictive policing based on risk terrain modeling. Progress in Geography, 37(8):1131-1139. ]
doi: 10.18306/dlkxjz.2018.08.012 |
|
[6] |
张延吉, 秦波, 朱春武 . 2019. 北京城市建成环境对犯罪行为和居住安全感的影响[J]. 地理学报, 74(2):238-252.
doi: 10.11821/dlxb201902003 |
[ Zhang Y J, Qin B, Zhu C W . 2019. The impact of urban built environment on criminal behavior and residential security in Beijing. Acta Geographica Sinica, 74(2):238-252. ]
doi: 10.11821/dlxb201902003 |
|
[7] |
Bernasco W, Block R . 2011. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points[J]. Journal of Research in Crime and Delinquency, 48(1):33-57.
doi: 10.1177/0022427810384135 |
[8] |
Braga A A, Hureau D M, Papachristos A V . 2011. The relevance of micro places to citywide robbery trends: A longitudinal analysis of robbery incidents at street corners and block faces in Boston[J]. Journal of Research in Crime and Delinquency, 48(1):7-32.
doi: 10.1177/0022427810384137 |
[9] | Brantingham P, Brantingham P . 1995. Criminality of place: crime generators and crime attractors[J]. European Journal on Criminal Policy and Research, 13(3):5-26. |
[10] |
Cervero R, Kockelman K . 1997. Travel demand and the 3Ds: Density, diversity and design[J]. Transportation Research D, 2(3):199-219.
doi: 10.1016/S1361-9209(97)00009-6 |
[11] |
Cohen L E, Felson M . 1979. Social change and crime rate trends: A routine activity approach[J]. American Sociological Review, 44(4):588-608.
doi: 10.2307/2094589 |
[12] | Cornish D B, Clarke R V . 1986. Reasoning criminal: Rational choice perspectives on offending[M]. New York, USA: Springer-Verlag. |
[13] |
Curtis-Ham S, Walton D . 2017. Mapping crime harm and priority locations in New Zealand: A comparison of spatial analysis methods[J]. Applied Geography, 86:245-254.
doi: 10.1016/j.apgeog.2017.06.008 |
[14] |
Deane G, Messner S F, Stucky T D , et al. 2008. Not 'islands, entire of themselves': Exploring the spatial context of city-level robbery rates[J]. Journal of Quantitative Criminology, 24(4):363-380.
doi: 10.1007/s10940-008-9049-3 |
[15] |
Ewing R, Cervero R . 2010. Travel and the built environment: A meta-analysis[J]. Journal of the American Planning Association, 76(3):265-294.
doi: 10.1186/s12966-017-0471-5 pmid: 28166790 |
[16] |
Foster S, Hooper P, Knuiman M , et al. 2016. Are liveable neighbourhoods safer neighbourhoods? Testing the rhetoric on new urbanism and safety from crime in Perth, Western Australia[J]. Social Science & Medicine, 164:150-157.
doi: 10.1111/medu.14027 pmid: 31875656 |
[17] |
Fotheringham A S . 1985. Spatial competition and agglomeration in urban modelling[J]. Environment and Planning A, 17(2):213-230
doi: 10.1068/a170213 |
[18] |
Gilderbloom J I, Riggs W W, Meares W L . 2015. Does walkability matter? An examination of walkability's impact on housing values, foreclosures and crime[J]. Cities, 42:13-24.
doi: 10.1016/j.cities.2014.08.001 |
[19] |
Gruenewald P J, Remer L . 2006. Changes in outlet densities affect violence rates[J]. Alcoholism: Clinical and Experimental Research, 30(7):1184-1193.
doi: 10.1111/j.1530-0277.2006.00141.x pmid: 16792566 |
[20] | Heaton P . 2010 Hidden in plain sight: What cost-of-crime research can tell us about investing in police [R]. Washington DC, USA: RAND Corporation Center on Quality Policing. |
[21] |
Hipp J R . 2010. A dynamic view of neighborhoods: The reciprocal relationship between crime and neighborhood structural characteristics[J]. Social Problems, 57(2):205-230.
doi: 10.1525/sp.2010.57.2.205 |
[22] | Jacobs J . 1961. The death and life of great American cities[M]. New York, USA: Vintage. |
[23] |
Langton S H, Steenbeek W . 2017. Residential burglary target selection: An analysis at the property-level using google street view[J]. Applied Geography, 86:292-299.
doi: 10.1016/j.apgeog.2017.06.014 |
[24] |
Linden L, Rockoff J E . 2008. Estimates of the impact of crime risk on property values from Megan's Laws[J]. American Economic Review, 98(3):1103-1127.
doi: 10.1257/aer.98.3.1103 |
[25] |
Liu D, Song W, Xiu C . 2016. Spatial patterns of violent crimes and neighborhood characteristics in Changchun, China[J]. Australian & New Zealand Journal of Criminology, 49(1):53-72.
doi: 10.1111/jep.13340 pmid: 31875655 |
[26] |
Los G, Ignatans D, Pease K . 2017. First-generation immigrant judgements of offence seriousness: Evidence from the crime survey for England and Wales[J]. Crime Prevention & Community Safety, 19(2):151-161.
doi: 10.1016/j.chiabu.2019.104328 pmid: 31869698 |
[27] |
Macbeth E, Ariel B . 2019. Place-based statistical versus clinical predictions of crime hot spots and harm locations in Northern Ireland[J]. Justice Quarterly, 36(1):93-126.
doi: 10.1080/07418825.2017.1360379 |
[28] |
Melo S N D, Matias L F, Andresen M A . 2015. Crime concentrations and similarities in spatial crime patterns in a Brazilian context[J]. Applied Geography, 62:314-324.
doi: 10.1016/j.apgeog.2015.05.012 |
[29] | Newman O . 1972. Defensible space: Crime prevention through urban design[M]. New York, USA: Macmillan. |
[30] |
Norton S, Ariel B, Weinborn C , et al. 2018. Spatiotemporal patterns and distributions of harm within street segments: The story of the "harmspot"[J]. Policing: An International Journal of Police Strategies & Management, 41(3):352-371.
doi: 10.1111/bjop.12404 pmid: 31190378 |
[31] |
Papachristos A V, Smith C M, Scherer M L , et al. 2011. More coffee, less crime? The relationship between gentrification and neighborhood crime rates in Chicago, 1991 to 2005[J]. City & Community, 10(3):215-240.
doi: 10.2169/internalmedicine.3770-19 pmid: 31875636 |
[32] |
Ratcliffe J H . 2015. Towards an index for harm-focused policing[J]. Policing, 9(2):164-181.
doi: 10.1093/police/pau032 |
[33] | Sellin T, Wolfgang M E . 1964. The measurement of delinquency[M]. New York, USA: John Wiley & Sons. |
[34] |
Sherman L, Neyroud P W, Neyroud E . 2016. The Cambridge crime harm index: Measuring total harm from crime based on sentencing guidelines[J]. Policing, 10(3):171-183.
doi: 10.1093/police/paw003 |
[35] |
Snook B, Wright M, House J C , et al. 2006. Searching for a needle in a needle stack: Combining criminal careers and journey-to-crime research for criminal suspect prioritization[J]. Police Practice and Research, 7(3):217-230.
doi: 10.1080/15614260500432972 |
[36] |
Sohn D . 2016. Residential crimes and neighbourhood built environment: Assessing the effectiveness of crime prevention through environmental design (CPTED)[J]. Cities, 52:86-93.
doi: 10.1016/j.cities.2015.11.023 |
[37] |
SooHyun O, Lee Y J . 2016. Crime and land use in Pittsburgh: A micro-size grid-cell analysis of the influence of land-uses on area crime[J]. Crime Prevention and Community Safety, 18(3):204-227.
doi: 10.1057/cpcs.2016.9 |
[38] |
Stacy C P, Ho H, Pendall R . 2017. Neighborhood-level economic activity and crime[J]. Journal of Urban Affairs, 39(2):225-240.
doi: 10.1186/s12966-019-0890-6 pmid: 31796075 |
[39] |
Stucky T D, Ottensmann J R . 2009. Land use and violent crime[J]. Criminology, 47(4):1223-1264.
doi: 10.1002/jcop.22243 pmid: 31508829 |
[40] |
Tobler W R . 1970. A Computer Movie Simulating urban growth in the Detroit region[J]. Economic Geography, 46:234-240.
doi: 10.2307/143141 |
[41] |
Twinam T . 2017. Danger zone: Land use and the geography of neighborhood crime[J]. Journal of Urban Economics, 100:104-119.
doi: 10.1016/j.jue.2017.05.006 |
[42] |
Weinborn C, Ariel B, Sherman L W , et al. 2017. Hotspots vs. harmspots: Shifting the focus from counts to harm in the criminology of place[J]. Applied Geography, 86:226-244.
doi: 10.1016/j.apgeog.2017.06.009 |
[43] |
Weisburd D . 2015. The law of crime concentration and the criminology of place[J]. Criminology, 53(2):133-157.
doi: 10.1007/s00115-018-0650-x pmid: 30560385 |
[44] |
Weisburd D, Bushway S, Lum C , et al. 2004. Trajectories of crime at places: A longitudinal study of street segments in the city of Seattle[J]. Criminology, 42(2):283-321.
doi: 10.1111/crim.2004.42.issue-2 |
[45] |
Weisburd D, Morris N A, Groff E R . 2009. Hot spots of juvenile crime: A longitudinal study of arrest incidents at street segments in Seattle, Washington[J]. Journal of Quantitative Criminology, 25(4):443-467.
doi: 10.1007/s10940-009-9075-9 |
[46] |
Wo J C . 2016. Community context of crime: A longitudinal examination of the effects of local institutions on neighborhood crime[J]. Crime & Delinquency, 62(10):1286-1312.
doi: 10.1007/s10964-019-01178-w pmid: 31875273 |
[47] |
Zhang W . 2016. Does compact land use trigger a rise in crime and a fall in ridership? A role for crime in the land use-travel connection[J]. Urban Studies, 53(14):3007-3026.
doi: 10.1177/0042098015605222 |
|