PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (8): 1182-1195.doi: 10.18306/dlkxjz.2019.08.007
• Special Column: Watershed Geography • Previous Articles Next Articles
DUAN Hongtao,LUO Juhua,CAO Zhigang,XUE Kun,XIAO Qitao,LIU Dong
Received:
2018-05-28
Revised:
2019-02-27
Online:
2019-08-25
Published:
2019-08-25
Supported by:
DUAN Hongtao,LUO Juhua,CAO Zhigang,XUE Kun,XIAO Qitao,LIU Dong. Progress in remote sensing of aquatic environments at the watershed scale[J].PROGRESS IN GEOGRAPHY, 2019, 38(8): 1182-1195.
Tab.1
Performance of common ocean color sensors"
卫星 | 传感器 | 类型 | 国家/组织 | 时段 | 波段数 | 空间分辨率/m |
---|---|---|---|---|---|---|
Nimbus-7 | CZCS | 极轨 | 美国 | 1978—1986年 | 6 | 825 |
HY-1A | COCTS | 极轨 | 中国 | 2002—2004年 | 10 | 1100 |
JEM-EF | HICO | 极轨 | 美国 | 2009—2014年 | 124 | 100 |
MERIS | ENVISAT | 极轨 | 欧盟 | 2002—2012年 | 15 | 300 |
OrbView-2 | SeaWFS | 极轨 | 美国 | 1997—2011年 | 8 | 1100 |
HY-1B | COCTS | 极轨 | 中国 | 2007年至今 | 10 | 1100 |
CMOS | GOCI | 静止 | 韩国 | 2010年至今 | 8 | 500 |
GCOM-C | SGLI | 极轨 | 日本 | 2017年至今 | 19 | 250 |
Terra/Aqua | MODIS | 极轨 | 美国 | 1999年至今 | 36 | 1000* |
S-NPP/NOAA-20 | VIIRS | 极轨 | 美国 | 2017年至今 | 22 | 750 |
Sentinel-3 A/B | OLCI | 极轨 | 欧盟 | 2016年至今 | 21 | 300 |
Tab.2
Algorithms for remote sensing derivation of water constitutes"
类别 | 参数 | 模型形式 | 适用范围 | 参考文献 |
---|---|---|---|---|
经验模型 | 叶绿素a | Rrs(709)/Rrs(665)、NDCI | 需要特定波段,目前支持MERIS、OLCI传感器 | Duan et al, 2012; Mishra et al, 2012 |
多元逐步回归模型、EOF、神经网络 | 依赖于模型训练的数据范围 | Qi et al, 2014b; Song et al, 2013 | ||
悬浮物 | 单波段、波段比值及组合模型 | 波长越长的波段越适合高浑浊的水体 | Cao et al, 2017; Knaeps et al, 2015 | |
藻蓝素 | Rrs(709)/Rrs(620)、 | 需要特定波段,目前支持MERIS、OLCI | Hunter et al, 2009 | |
PCI算法 | 适应范围广,不需要大气精校正,但目前支持MERIS、OLCI传感器 | Qi et al, 2014a | ||
DOC | 多元逐步回归模型 | 依赖于实测数据 | Griffin et al, 2018 | |
POC | 红光/近红外等经验比值算法 | 依赖于不同水体光学特性主导因子 | Duan et al, 2014; Son et al, 2009 | |
分析/半分析模型 | 叶绿素a | Gons方法、三波段等 | 依赖于特殊波段且模型中涉及的系数需要根据不同水体进行率定 | Gitelson et al, 2008; Gons et al, 2008 |
悬浮物 | 基于颗粒物后向散射系数的反演模型 | 适用于中低浑浊的水体 | Nechad et al, 2010 | |
藻蓝素 | Simis方法 | 依赖于特殊波段且模型中涉及的系数需要根据不同水体进行率定 | Simis et al, 2005 | |
DOC | 基于CDOM吸收系数的方法 | CDOM吸收系数反演困难 | Fichot et al, 2011 | |
POC | 基于Gons、Simis等算法 | 藻类控制的富营养化湖泊 | Jiang et al, 2015 |
2 |
[ Guo H D, Wang L Z, Chen F , et al. 2014. Scientific big data and digital Earth. Chinese Science Bulletin, 59(12):1047-1054. ]
doi: 10.1360/972013-1054 |
3 | 何贤强, 唐军武, 白雁 , 等. 2009. 2003年春季长江口海域黑水现象研究[J]. 海洋学报, 31(3):30-38. |
[ He X Q, Tang J W, Bai Y , et al. 2009. The black water around the Changjiang estuary in China in the spring of 2003. Acta Oceanologica Sinica, 31(3):30-38. ] | |
4 | 《环境科学大辞典》编委会主编. 2008. 环境科学大辞典 [M]. 北京: 中国环境科学出版社. |
[ Editorial Committee of Dictionary of Environmental Science. 2008. Dictionary of environment science. Beijing, China: Environmental Science Press. ] | |
5 | 贾绍凤, 姜文来, 沈大军 , 等. 2006. 水资源经济学 [M]. 北京: 中国水利水电出版社. |
[ Jia S F, Jiang E L, Shen D J , et al. 2006. Science of water resource economic. Beijing, China: China Water & Power Press. ] | |
6 |
李德仁, 张良培, 夏桂松 . 2014. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 43(12):1211-1216.
doi: 10.13485/j.cnki.11-2089.2014.0187 |
1 | 房旭, 段洪涛, 曹志刚 , 等. 2018. 基于多源卫星数据的小型水体蓝藻水华联合监测研究: 以天津于桥水库为例[J]. 湖泊科学, 30(4):967-978. |
[ Fang X, Duan H T, Cao Z G , et al. 2018. Remote monitoring of cyanobacterial blooms using multi-source satellite data: A case of Yuqiao Reservoir, Tianjin. Journal of Lake Science, 30(4):967-978. ] | |
6 |
[ Li D R, Zhang L P, Xia G S . 2014. Automatic analysis and mining of remote sensing big data. Acta Geodactica et Cartographica Sinica, 43(12):1211-1216. ]
doi: 10.13485/j.cnki.11-2089.2014.0187 |
7 | 李佐琛, 段洪涛, 申秋实 , 等. 2015. 藻源性湖泛发生过程CDOM变化对水色的影响[J]. 湖泊科学, 27(4):616-622. |
[ Li Z C, Duan H T, Shen Q S , et al. 2015. The changes of water color induced by chromophoric dissolved organic matter (CDOM) during the formation of black blooms. Journal of Lake Science, 27(4):616-622. ] | |
8 | 刘国锋, 钟继承, 何俊 , 等. 2009. 太湖竺山湾藻华黑水团区沉积物中Fe、S、P的含量及其形态变化[J]. 环境科学, 30(9):2520-2526. |
[ Liu G F, Zhong J C, He J , et al. 2009. Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay, Lake Taihu. Environment Science, 30(9):2520-2526. ] | |
9 | 马荣华, 杨桂山, 段洪涛 , 等. 2011. 中国湖泊的数量、面积与空间分布[J]. 中国科学(地球科学), 41(3):394-401. |
[ Ma R H, Yang G H, Duan H T , et al. 2011. China's lakes at present: Number, area and spatial distribution. Scientia Sinica Terrae, 41(3):394-401. ] | |
10 | 马荣华, 张玉超, 段洪涛 . 2016. 非传统湖泊水色遥感的现状与发展[J]. 湖泊科学, 28(2):237-245. |
[ Ma R H, Zhang Y C, Duan H T . 2016. The status and development of the non-traditional lake water color remote sensing. Journal of Lake Science, 28(2):237-245. ] | |
11 | 宋国君 . 2008. 环境政策分析 [M]. 北京: 化学工业出版社. |
[ Song G J. 2008. Environmental Policy Analysis . Beijing, China: Chemical Inductry Press. ] | |
12 | 宋金明 . 2008. 中国近海与湖泊碳的生物地球化学 [M]. 北京: 科学出版社. |
[ Song J M. 2008. Biogeochemistry of carbon in China's coastal and lakes . Beijing, China: Science Press. ] | |
13 | 孙天琳, 赵云升, 梁壬凤 , 等. 2012. 水生植物与水体混合像元的反射高光谱特征分析[J]. 光谱学与光谱分析, 32(2):449-452. |
[ Sun T L, Zhao Y S, Liang R F , et al. 2012. Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water. Spectroscopy and Spectral Analysis, 32(2):449-452. ] | |
14 | 王资峰 . 2010. 中国流域水环境管理体制研究[D]. 北京: 中国人民大学. |
[ Wang Z F . 2010. Study on river basin water environment management system of China. Beijing, China: Renmin University of China. ] | |
15 | 杨桂山, 马荣华, 张路 , 等. 2010. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 22(6):799-810. |
[ Yang G S, Ma R H, Zhang L , et al. 2010. Lake status, major problems and protection strategy in China. Journal of Lake Science, 22(6):799-810. ] | |
16 | 邹维娜, 张利权, 袁琳 . 2014. 基于光谱特征的沉水植物种类识别研究[J]. 华东师范大学学报(自然科学版), ( 4):132-140. |
[ Zou W N, Zhang L Q, Yuan L . 2014. Study on species identification of submerged aquatic vegetation based on spectral characteristics. Journal of East China Normal University (Natural Science), ( 4):132-140. ] | |
17 | Barillé L, Robin M, Harin N , et al. 2010. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing[J]. Aquatic Botany, 92(3):185-194. |
18 | Bastviken D, Tranvik L, Downing J A , et al. 2011. Freshwater methane emissions offset the continental carbon sink[J]. Science, 331:50-50. |
19 | Bendig J, Yu K, Aasen H , et al. 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 39:79-87. |
20 | Berthon J F, Zibordi G . 2010. Optically black waters in the northern Baltic Sea[J]. Geophysical Research Letters, 37(9):232-256. |
21 | Butman D, Stackpoole S, Stets E , et al. 2016. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting[J]. PNAS, 113(1):58-63. |
22 | Cao Z, Duan H, Feng L , et al. 2017. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales[J]. Remote Sensing of Environment, 192:98-113. |
23 | DelSontro T, Beaulieu J J, Downing J A . 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[J]. Limnology and Oceanography Letters, 3(3):64-75. |
24 | Diaz R J, Rosenberg R . 2008. Spreading dead zones and consequences for marine ecosystems[J]. Science, 321:926-929. |
25 | Duan H, Feng L, Ma R , et al. 2014. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery[J]. Environmental Research Letters, 9:1-10. |
26 | Duan H, Loiselle S A, Li Z , et al. 2016. A new insight into black blooms: Synergies between optical and chemical factors[J]. Estuarine, Coastal and Shelf Science, 175:118-125. |
27 | Duan H, Ma R, Hu C . 2012. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China[J]. Remote Sensing of Environment, 126:126-135. |
28 | Duan H, Ma R, Xu X , et al. 2009. Two-decade reconstruction of algal blooms in China's Lake Taihu[J]. Environmental Science & Technology, 43(10):3522-3528. |
29 | Duan H, Tao M, Loiselle S A , et al. 2017. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source[J]. Water Research, 122:455-470. |
30 | Feyisa G L, Meilby H, Fensholt R , et al. 2014. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 140:23-35. |
31 | Fichot C, Benner R . 2011. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters[J]. Geophysical Research Letters, 38:1-5. |
32 | Frappart F, Papa F, Güntner A , et al. 2011. Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains[J]. Remote Sensing of Environment, 115(6):1588-1594. |
33 | Giardino C, Bresciani M, Valentini E , et al. 2015. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake[J]. Remote Sensing of Environment, 157:48-57. |
34 | Gitelson A A, Dall'Olmo G, Moses W , et al. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation[J]. Remote Sensing of Environment, 112(9):3582-3593. |
35 | Gons H J . 1999. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology, 33(7):1127-1132. |
36 | Gons H J, Auer M T, Effler S W . 2008. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes[J]. Remote Sensing of Environment, 112(11):4098-4106. |
37 | Gordon H R, Brown O B, Evans R H , et al. 1988. A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research: Atmospheres, 93(D9):10909-10924. |
38 | Gordon H R, Wang M . 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm[J]. Applied Optics, 33(3):443-452. |
39 | Griffin C G, McClelland J W, Frey K E , et al. 2018. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data[J]. Remote Sensing of Environment, 209:395-409. |
40 | Hu C, Feng L, Lee Z , et al. 2012. Dynamic range and sensitivity requirements of satellite ocean color sensors: Learning from the past[J]. Applied Optics, 51(25):6045-6062. |
41 | Hu C, Lee Z, Franz B . 2012. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference[J]. Journal of Geophysical Research: Oceans, 117:1-25. |
42 | Hu C, Lee Z, Ma R , et al. 2010. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China[J]. Journal of Geophysical Research: Oceans, 115:1-20. |
43 | Hu C . 2009. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 113(10):2118-2129. |
44 | Hunter P D, Tyler A N, Gilvear D J , et al. 2009. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria[J]. Environmental Science & Technology, 43(7):2627-2633. |
45 | Janssen A B G, Teurlincx S, An S , et al. 2014. Alternative stable states in large shallow lakes[J]. Journal of Great Lakes Research, 40(4):813-826. |
46 | Jiang G, Ma R, Loiselle S A , et al. 2015. Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China)[J]. Science of the Total Environment, 532:245-254. |
47 | Knaeps E, Ruddick K G, Doxaran D , et al. 2015. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters[J]. Remote Sensing of Environment, 168:66-79. |
48 | Li J, Sheng Y . 2012. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas[J]. International Journal of Remote Sensing, 33:5194-5213. |
49 | Li J, Zhang Y, Ma R , et al. 2017. Satellite-based estimation of column-integrated algal biomass in Nonalgae bloom conditions: A case study of Lake Chaohu, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10:450-462. |
50 | Liang Q, Zhang Y, Ma R , et al. 2017. A MODIS-based novel method to distinguish surface cyanobacterial scums and aquatic macrophytes in Lake Taihu[J]. Remote Sensing, 9(2):133. doi: 10.3390/rs9020133. |
51 | Liu X, Zhang Y, Shi K , et al. 2015. Mapping aquatic vegetation in a large, shallow eutrophic lake: A frequency-based approach using multiple years of MODIS data[J]. Remote Sensing, 7(8):10295-10320. doi: 10.3390/rs70810295. |
52 | Lohrenz S E, Cai W J, Chakraborty S , et al. 2018. Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico[J]. Remote Sensing of Environment, 207:71-83. |
53 | Luo J, Duan H, Ma R , et al. 2017. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information[J]. International Journal of Applied Earth Observation & Geoinformation, 57:154-165. |
54 | Luo J, Li X, Ma R , et al. 2016. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China[J]. Ecological Indicators, 60:503-513. |
55 | Ma R H, Duan H T, Hu C M , et al. 2010. A half-century of changes in China's lakes: Global warming or human influence?[J]. Geophysical Research Letters , doi: 10.1029/2010GL045514. |
56 | McFeeters S K . 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17:1425-1432. |
57 | Mishra S, Mishra D R . 2012. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters[J]. Remote Sensing of Environment, 117:394-406. |
58 | Mobley C D. 1994. Light and water: Radiative transfer in natural waters [M]. Cambridge, USA: Academic Press. |
59 | Morel A, Gentili B . 1991. Diffuse reflectance of oceanic waters: Its dependence on Sun angle as influenced by the molecular scattering contribution[J]. Applied Optics, 30(30):4427-4438. |
60 | Morel A, Prieur L . 1977. Analysis of variations in ocean color[J]. Limnology and Oceanography, 22:709-722. |
61 | Mouw C B, Greb S, Aurin D , et al. 2015. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions[J]. Remote Sensing of Environment, 160:15-30. |
62 | Nechad B, Ruddick K, Park Y . 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters[J]. Remote Sensing of Environment, 114:854-866. |
63 | Oyama Y, Matsushita B, Fukushima T . 2015. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands[J]. Remote Sensing of Environment, 157:35-47. |
64 | Pekel J F, Cottam A, Gorelick N , et al. 2016. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 540:418-422. |
65 | Phinn S, Roelfsema C, Dekker A , et al. 2008. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia)[J]. Remote Sensing of Environment, 112:3413-3425. |
66 | Pu R, Meyer C, Baggett L , et al. 2012. Mapping and assessing seagrass along the western coast of Florida using Landsat TM and EO-1 ALI/Hyperion imagery[J]. Estuarine Coastal & Shelf Science, 115(1):234-245. |
67 | Qi L, Hu C, Duan H , et al. 2014 a. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations[J]. Remote Sensing of Environment, 154:298-317. |
68 | Qi L, Hu C, Duan H , et al. 2014 b. An EOF-based algorithm to estimate chlorophyll a concentrations in Taihu Lake from MODIS land-band measurements: Implications for near real-time applications and forecasting models[J]. Remote Sensing, 6(11):10694-10715. doi: 10.3390/rs61110694. |
69 | Radomski P, Perleberg D . 2012. Application of a versatile aquatic macrophyte integrity index for Minnesota lakes[J]. Ecological Indicators, 20(3):252-268. |
70 | Raymond P A, Hartmann J, Lauerwald R , et al. 2013. Global carbon dioxide emissions from inland waters[J]. Nature, 503:355-359. |
71 | Simis S G H, Peters S W M, Gons H J . 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water[J]. Limnology and Oceanography 50: 237-245. |
72 | Soana E, Naldi M, Bartoli M . 2012. Effects of increasing organic matter loads on pore water features of vegetated (Vallisneria spiralis L.) and plant-free sediments[J]. Ecological Engineering, 47:141-145. |
73 | Son Y B, Gardner W D, Mishonov A V , et al. 2009. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico[J]. Remote Sensing of Environment, 113:50-61. |
74 | Song K, Li L, Li S , et al. 2013. Using partial least squares-artificial neural network for inversion of inland water chlorophyll-a[J]. IEEE Transactions on Geoscience & Remote Sensing, 52(2):1502-1517. |
75 | Tranvik L J, Downing J A, Cotner J B , et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 54:2298-2314. |
76 | Villa P, Bresciani M, Bolpagni R , et al. 2015. A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices[J]. Remote Sensing of Environment, 171:218-233. |
77 | Wang M . 2007. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations[J]. Applied Optics, 46:1535-1547. |
78 | Xu J P, Zhao D Z . 2014. Review of coral reef ecosystem remote sensing[J]. Acta Ecologica Sinica, 34(1):19-25. |
79 | Xue K, Zhang Y, Duan H , et al. 2015. A remote sensing approach to estimate vertical profile classes of phytoplankton in a eutrophic lake[J]. Remote Sensing, 7(11):14403-14427. doi: 10.3390/rs71114403. |
80 | Yadav S, Yoneda M, Susaki J , et al. 2017. A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa[J]. Remote Sensing, 9(9):966. doi: 10.3390/rs9090966. |
81 | Zhang G, Yao T, Chen W , et al. 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 221:386-404. |
82 | Zhang Y, Jeppesen E, Liu X , et al. 2017. Global loss of aquatic vegetation in lakes[J]. Earth-Science Reviews, 173:259-265. |
83 | Zhang Y, Ma R, Duan H , et al. 2014. A novel algorithm to estimate algal bloom coverage to subpixel resolution in Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7:3060-3068. |
84 | Zhao D, Lv M, Jiang H , et al. 2013. Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years[J]. PLoS One, 8(6):E66365. doi: 10.1371/journal.pone.0066365. |
85 | Zhou G, Niu C, Xu W , et al. 2015. Canopy modeling of aquatic vegetation: A radiative transfer approach[J]. Remote Sensing of Environment, 163:186-205. |
86 | Zou W, Yuan L, Zhang L . 2013. Analyzing the spectral response of submerged aquatic vegetation in a eutrophic lake, Shanghai, China[J]. Ecological Engineering, 57:65-71. |
2 |
郭华东, 王力哲, 陈方 , 等. 2014. 科学大数据与数字地球[J]. 科学通报, 59(12):1047-1054.
doi: 10.1360/972013-1054 |
[1] | SUN Kun, ZHONG Linsheng. International research on national park management for public welfare and implications [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 314-329. |
[2] | TAN Ronghui, LIU Yaolin, LIU Yanfang, HE Qingsong. A literature review of urban growth boundary: Theory, modeling, and effectiveness evaluation [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 327-338. |
[3] | XUE Lan. A review and prospect of international studies on rural amenity [J]. PROGRESS IN GEOGRAPHY, 2020, 39(12): 2129-2138. |
[4] | ZHOU Kai, HE Linyi, ZHANG Yiwen. A review of literature on the concept, impacts, and spatial interactions of sharing short-term rental platform [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1934-1943. |
[5] | ZHAO Ruidong, FANG Chuanglin, LIU Haimeng. Progress and prospect of urban resilience research [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1717-1731. |
[6] | Qing GAO, Huasong LUO, Zhenbo WANG, Jinping SONG. Research progress and prospect of Beautiful China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1021-1033. |
[7] | Limin LIU, Linsheng ZHONG, Hu YU. Progress of glacier tourism research and implications [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 533-545. |
[8] | Manchun LI, Mengru YAO, Xia WANG, Xiaoqiang LIU, Yanming CHEN. A review of studies on the “pole-axis system” theory based on citation analysis [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 164-174. |
[9] | Yingbiao CHEN, Zihao ZHENG, Zhifeng WU, Qinglan QIAN. Review and prospect of application of nighttime light remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 205-223. |
[10] | Xin XU, Yuan ZHAO, Xinlin ZHANG, Tonggang ZENG, Siyou XIA, Qianqian XIE, Qi SUN. Research progress and prospects of Chinese geriatric geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(10): 1416-1429. |
[11] | Hongyan LIU, Wen CHEN. A review of research on the distribution of basic education resources in China [J]. PROGRESS IN GEOGRAPHY, 2017, 36(5): 557-568. |
[12] | Ling'en WANG, Lei WANG, Linsheng ZHONG, Shengkui CHENG. A literature research on tourism food consumption [J]. PROGRESS IN GEOGRAPHY, 2017, 36(4): 513-526. |
[13] | Lianlian XIAO, Linsheng ZHONG, Rui ZHOU, Hu YU. Review of international research on national parks as an evolving knowledge domain in recent 30 years [J]. PROGRESS IN GEOGRAPHY, 2017, 36(2): 244-255. |
[14] | Jiawei WU, Wen CHEN, Peng ZHANG. A literature review of merger and acquisition (M&A) study from the geographical perspective: Location choice, driving mechanism and implications [J]. PROGRESS IN GEOGRAPHY, 2017, 36(11): 1423-1434. |
[15] | Na TA, Zhilin LIU. Trends of research on women's space-time behavior in Western countries and implications for studies in China [J]. PROGRESS IN GEOGRAPHY, 2017, 36(10): 1208-1217. |
|