PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (6): 851-860.doi: 10.18306/dlkxjz.2019.06.006
• Articles • Previous Articles Next Articles
Bingchun LIU1(), Xin QI1, Qingshan WANG2,*(
)
Received:
2018-10-04
Revised:
2019-03-18
Online:
2019-06-28
Published:
2019-06-27
Contact:
Qingshan WANG
E-mail:tjutlbc@163.com;tigermountain@yeah.net
Supported by:
Bingchun LIU, Xin QI, Qingshan WANG. Urban metabolism prediction of Beijing City based on long short-term memory neural network[J].PROGRESS IN GEOGRAPHY, 2019, 38(6): 851-860.
Tab.1
Prediction results of exosomatic energy metabolic rate (EMR) in different sectors"
年份 | 第一产业 | 第二产业 | 第三产业 | 生活部门 | 总体 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMR1/(MJ/h) | 增速/% | EMR2/(MJ/h) | 增速/% | EMR3/(MJ/h) | 增速/% | EMR4/(MJ/h) | 增速/% | EMRT/(MJ/h) | 增速/% | ||||||
2017 | 22.36 | 1.09 | 143.31 | 1.3 | 52.04 | 2.08 | 2.89 | 2.62 | 10.29 | -4.94 | |||||
2018 | 22.11 | -1.1 | 145.26 | 1.36 | 52.8 | 1.46 | 2.99 | 3.16 | 10 | -2.77 | |||||
2019 | 22.08 | -0.15 | 147.23 | 1.36 | 53.63 | 1.57 | 3.09 | 3.37 | 9.55 | -4.5 | |||||
2020 | 21.95 | -0.61 | 149.23 | 1.36 | 54.47 | 1.56 | 3.21 | 4.02 | 9.16 | -4.13 | |||||
2021 | 21.86 | -0.41 | 151.26 | 1.36 | 55.33 | 1.57 | 3.35 | 4.26 | 8.69 | -5.08 | |||||
2022 | 21.75 | -0.51 | 153.32 | 1.36 | 56.2 | 1.59 | 3.51 | 4.94 | 8.21 | -5.47 |
Tab.2
Beijing urban metabolic prediction by different scenarios (MJ/h)"
代谢率 | 情景分类 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 |
---|---|---|---|---|---|---|
EMRT | 历史情景 | 10.00 | 9.55 | 9.16 | 8.69 | 8.21 |
低增长率 | 9.10 | 8.76 | 8.22 | 7.74 | 7.18 | |
高增长率 | 10.90 | 10.33 | 10.07 | 9.61 | 9.23 | |
EMR1 | 历史情景 | 22.11 | 22.08 | 21.95 | 21.86 | 21.75 |
低增长率 | 20.29 | 20.43 | 20.14 | 20.05 | 19.86 | |
高增长率 | 23.88 | 23.71 | 23.72 | 23.65 | 23.61 | |
EMR2 | 历史情景 | 145.26 | 147.23 | 149.23 | 151.26 | 153.32 |
低增长率 | 131.48 | 133.26 | 135.06 | 136.89 | 138.74 | |
高增长率 | 159.05 | 161.22 | 163.43 | 165.67 | 167.94 | |
EMR3 | 历史情景 | 52.80 | 53.63 | 54.47 | 55.33 | 56.20 |
低增长率 | 48.20 | 48.98 | 49.72 | 50.49 | 51.27 | |
高增长率 | 57.38 | 58.30 | 59.28 | 60.29 | 61.34 | |
EMR4 | 历史情景 | 2.99 | 3.09 | 3.21 | 3.35 | 3.51 |
低增长率 | 2.73 | 2.86 | 2.91 | 3.02 | 3.12 | |
高增长率 | 3.26 | 3.33 | 3.54 | 3.71 | 3.97 |
Tab.3
Time series change rate of metabolic disturbance amplitude in Beijing under different scenarios (%)"
代谢率 | 情景分类 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 代数平均值 |
---|---|---|---|---|---|---|---|
EMRT | 低增长率 | -9.02 | -8.27 | -10.22 | -10.90 | -12.57 | -10.19 |
高增长率 | 9.02 | 8.14 | 9.95 | 10.56 | 12.31 | 10.00 | |
EMR1 | 低增长率 | -8.27 | -7.48 | -8.22 | -8.25 | -8.69 | -8.18 |
高增长率 | 8.01 | 7.36 | 8.09 | 8.19 | 8.58 | 8.05 | |
EMR2 | 低增长率 | -9.49 | -9.49 | -9.50 | -9.50 | -9.51 | -9.50 |
高增长率 | 9.50 | 9.50 | 9.51 | 9.52 | 9.53 | 9.51 | |
EMR3 | 低增长率 | -8.72 | -8.68 | -8.71 | -8.74 | -8.78 | -8.73 |
高增长率 | 8.67 | 8.71 | 8.84 | 8.98 | 9.14 | 8.87 | |
EMR4 | 低增长率 | -8.70 | -7.20 | -9.45 | -9.65 | -11.29 | -9.26 |
高增长率 | 9.20 | 7.85 | 10.27 | 10.82 | 13.09 | 10.25 |
[1] | 李恒. 2019. 人口集中、城市群对经济增长作用的实证分析: 以中国十大城市群为例[J]. 河南大学学报(社会科学版), 59(1): 43-52. |
[Li H.2019. Empirical analysis of the effects of population concentration and urban agglomeration on economic growth. Journal of Henan University (Social Science), 59(1): 43-52. ] | |
[2] |
李旋旗, 花利忠. 2012. 基于系统动力学的城市住区形态变迁对城市代谢效率的影响[J]. 生态学报, 32(10): 2965-2974.
doi: 10.5846/stxb201104250542 |
[Li X Q, Hua L Z.2012. Landscape aesthetic assessment based on experiential paradigm assessment technology. Acta Ecologica Sinica, 32(10): 2965-2974. ]
doi: 10.5846/stxb201104250542 |
|
[3] | 刘晔, 耿涌, 赵恒心. 2011. 基于MSIASM方法的中国省级行政区体外能代谢分析[J]. 生态学报, 31(11): 3133-3142. |
[Liu Y, Geng Y, Zhao H X, 2011. Societal metabolism for chinese provinces based on multi-scale integrated analysis of societal metabolism (MSIASM). Acta Ecologica Sinica, 31(11): 43-52. ] | |
[4] | 宋涛, 蔡建明, 倪攀, 等. 2013a. 城市新陈代谢研究综述及展望[J]. 地理科学进展, 32(11): 1650-1661. |
[Song T, Cai J M, Ni P, et al.2013. Review and prospects of urban metabolism research. Progress in Geography, 32(11): 1650-1661. ] | |
[5] | 宋涛, 蔡建明, 倪攀, 等. 2013b. 基于能值和DEA的中国城市新陈代谢效率分析[J]. 资源科学, 35(11): 2166-2173. |
[Song T, Cai J M, Pan N, et al.2013. Chinese urban metabolic efficiencies based on emergy and DEA. Resources Science, 35(11): 2166-2173. ] | |
[6] | 王天送. 2008. 社会代谢多尺度综合评估(MSIASM)的基本理论与实践[J]. 地球科学进展, 27(1): 63-70. |
[Wang T.2008. The rationale of multiple-scale integrated assessment of societal metabolism. Advances in Earth Science, 27(1): 63-70. ] | |
[7] | 王劲峰,徐成东. 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134. |
[Wang J, Xu C.2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116-134. ] | |
[8] | 文琦,施琳娜,马彩虹, 等. 2018. 黄土高原村域多维贫困空间异质性研究: 以宁夏彭阳县为例[J]. 地理学报, 73(10): 1850-1864. |
[Wen Q, Shi L, Ma C, et al.2018. Spatial heterogeneity of multidimensional poverty at the village level: Loess Plateau. Acta Geographica Sinica, 73(10): 1850-1864. ] | |
[9] |
湛东升,张文忠,余建辉, 等. 2015. 基于地理探测器的北京市居民宜居满意度影响机理[J]. 地理科学进展, 34(8): 966-975.
doi: 10.18306/dlkxjz.2015.08.004 |
[Zhan D, Zhang W, Yu J, et al.2015. Analysis of influencing mechanism of residents' livability satisfaction in Beijing using geographical detector. Progress in Geography, 34(8): 966-975. ]
doi: 10.18306/dlkxjz.2015.08.004 |
|
[10] | Abdel-Nasser M, Mahmoud K.2017. Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural Computing & Applications, 10: 1-14. |
[11] |
Elliot T, Rugani B, Almenar J B, et al.2018. A proposal to integrate system dynamics and carbon metabolism for urban planning[J]. Procedia CIRP, 69: 78-82.
doi: 10.1016/j.procir.2017.10.003 |
[12] |
Geng Y, Liu Y, Liu D, et al.2011. Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism (MSIASM) approach[J]. Energy, 36(8): 4799-4808.
doi: 10.1016/j.energy.2011.05.014 |
[13] | Giampietro M, Mayumi K.1997. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability[J]. Structural Change & Economic Dynamics, 8(4): 453-469. |
[14] | Giampietro M, Mayumi K.2000. Multiple-scale integrated assessment of societal metabolism: Introducing the approach[J]. Population & Environment, 22(2): 109-153. |
[15] |
Giampietro M, Mayumi K, Munda G.2006. Integrated assessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability[J]. Energy, 31(1): 59-86.
doi: 10.1016/j.energy.2005.03.005 |
[16] | Greff K, Srivastava R K, Koutník J, et al.2017. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 28(10): 2222-2232. |
[17] | Hadiye A S, Giampietro M, Aleu A L, et al.2009. Applications of the MuSIASEM approach to study changes in the metabolic pattern of Catalonia [R/OL]. Reports on Environmental Sciences. 2009-07-27 [2019-03-15]. . |
[18] |
Han W, Geng Y, Lu Y, et al.2018. Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways[J]. Energy, 155(15): 887-898.
doi: 10.1016/j.energy.2018.05.073 |
[19] | Jiang Q, Tang C, Chen C, et al.2018. Stock price forecast based on LSTM neural network[C]// Xu J, Cooke F, Gen M, et al. Proceedings of the twelfth international conference on management science and engineering management. ICMSEM 2018. Cham: Springer: 393-408. |
[20] |
Kumar J, Goomer R, Singh A K.2018. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science, 125: 676-682.
doi: 10.1016/j.procs.2017.12.087 |
[21] |
Li Y, Wang X, Tian X, et al.2018. Understanding the mechanism of urban material metabolism with ecological network analysis: An experimental study of Wuxi, China[J]. Ecological Modelling, 367: 58-67
doi: 10.1016/j.ecolmodel.2017.09.007 |
[22] |
Lu Y, Geng Y, Qian Y, et al.2016. Changes of human time and land use pattern in one mega city's urban metabolism: A multi-scale integrated analysis of Shanghai[J]. Journal of Cleaner Production, 133(1): 391-401.
doi: 10.1016/j.jclepro.2016.05.174 |
[23] |
Ma X, Tao Z, Wang Y, et al.2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C, 54: 187-197
doi: 10.1016/j.trc.2015.03.014 |
[24] | Martín J R, Eisenmenger N, Schandl H.2008. Different trajectories of exosomatic energy metabolism for Brazil, Chile and Venezuela: Using the MSIASM approach [R]. Working Papers. Barcelona, Spain: Department of Applied Economics, Universitat Autonoma of Barcelona. |
[25] |
Mayumi K.1991. Temporary emancipation from land: From the industrial revolution to the present time[J]. Ecological Economics, 4(1): 35-56.
doi: 10.1016/0921-8009(91)90004-X |
[26] | Munro D A, Holdgate M W.1991. Caring for the earth: A strategy for sustainable living[M]. IUCN, UNEP, WWF: 14-15. |
[27] | Pincetl S, Bunje P, Holmes T.2012. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes[J]. Landscape & Urban Planning, 107(3): 193-202. |
[28] | Qi W, Deng X, Chu X, et al.2017. Emergy analysis on urban metabolism by counties in Beijing[J]. Physics & Chemistry of the Earth Parts A/B/C, 101: 157-165. |
[29] |
Ramos-Martin J, Giampietro M, Mayumi K.2007. On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)[J]. Ecological Economics, 63(1): 174-191.
doi: 10.1016/j.ecolecon.2006.10.020 |
[30] | Scheidel A. 2013. From MuSIASEM theory to practice: Report and reflections from field research in Kampot province, Cambodia [R/OL]. Reports on Environmental Sciences. Institute of Environmental Science and Technology (ICTA). Barcelona, Spain: Autonomous University of Barcelona (UAB). . |
[31] |
Silva-Macher J C.2016. A metabolic profile of peru: An application of multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM) to the mining sector's exosomatic energy flows[J]. Journal of Industrial Ecology, 20(5): 1072-1082.
doi: 10.1111/jiec.12337 |
[32] | Song T, Cai J M, Chahine T, et al.2014. Modeling urban metabolism of Beijing City, China: With a coupled system dynamics: Emergy model[J]. Stochastic Environmental Research & Risk Assessment, 28(6): 1511-1524. |
[33] |
Tejedor-Flores N, Vicente-Galindo P, Galindo-Villardón P.2017. Sustainability multivariate analysis of the energy consumption of ecuador using MuSIASEM and BIPLOT approach[J]. Sustainability, 9(6): 984.
doi: 10.3390/su9060984 |
[34] | Vafa-Arani H, Jahani S, Dashti H, et al.2014. A system dynamics modeling for urban air pollution: A case study of Tehran, Iran[J]. Transportation Research Part D Transport & Environment, 31(31): 21-36. |
[35] |
Wang X, Wu S, Li S.2017. Urban metabolism of three cities in Jing-Jin-Ji urban agglomeration, China: Using the MuSIASEM Approach[J]. Sustainability, 9(8): 1481-1502.
doi: 10.3390/su9081481 |
[36] | Yuan X, Chen C, Lei X, et al.2018. Monthly runoff forecasting based on LSTM-ALO model[J]. Stochastic Environmental Research & Risk Assessment, 32(8): 1-14. |
[37] |
Yan Z, Li Y, Zheng H.2017. Ecological network analysis of energy metabolism in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration[J]. Ecological Modelling, 351: 51-62.
doi: 10.1016/j.ecolmodel.2017.02.015 |
[38] |
Yan Z, Zheng H, Yang Z, et al.2016. Urban energy flow processes in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration: Combining multi-regional input-output tables with ecological network analysis[J]. Journal of Cleaner Production, 114: 243-256.
doi: 10.1016/j.jclepro.2015.06.093 |
[39] |
Zhai M, Huang G, Liu L, et al.2018. Dynamic input-output analysis for energy metabolism system in the Province of Guangdong, China[J]. Journal of Cleaner Production, 196: 747-762.
doi: 10.1016/j.jclepro.2018.06.084 |
[40] | Zhang J, Zhang Y.2011. Ecological network analysis of an urban energy metabolic system[J]. Stochastic Environmental Research & Risk Assessment, 25(5): 685-695. |
|