PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (4): 588-599.doi: 10.18306/dlkxjz.2019.04.011
• Articles • Previous Articles Next Articles
Yang LIU1,2(), Jianshu LV3, Jun BI4
Received:
2018-10-04
Revised:
2019-02-02
Online:
2019-04-28
Published:
2019-04-28
Supported by:
Yang LIU, Jianshu LV, Jun BI. Characterizing water purification services and quantifying their driving factors in watershed terrestrial ecosystems[J].PROGRESS IN GEOGRAPHY, 2019, 38(4): 588-599.
Tab.1
Parameter values of the InVEST model in the study area"
地类 | 编码 | 根系长度/mm | 蒸散系数 | 氮输出系数/(kg/hm2) | 氮滤除率/% | 磷输出系数/(kg/hm2) | 磷滤除率/% |
---|---|---|---|---|---|---|---|
水田 | 1 | 700 | 0.85 | 19.40 | 30 | 1.22 | 30 |
旱地 | 2 | 800 | 0.60 | 14.70 | 40 | 0.59 | 40 |
有林地 | 3 | 7000 | 1.00 | 2.12 | 80 | 0.15 | 80 |
灌木林 | 4 | 6000 | 1.00 | 2.12 | 70 | 0.15 | 70 |
疏林地 | 5 | 5500 | 0.90 | 3.12 | 60 | 0.18 | 60 |
其他林地 | 6 | 3000 | 0.85 | 2.62 | 50 | 0.16 | 50 |
草地 | 7 | 2000 | 0.65 | 3.20 | 48 | 0.20 | 40 |
河渠 | 8 | 800 | 0.95 | 0.001 | 5 | 0.001 | 5 |
湖泊 | 9 | 1000 | 1.00 | 0.001 | 5 | 0.001 | 5 |
水库坑塘 | 10 | 1000 | 1.00 | 0.001 | 5 | 0.001 | 5 |
湿地 | 11 | 6000 | 0.95 | 2.00 | 80 | 0.05 | 80 |
城镇用地 | 12 | 1 | 0.65 | 12.00 | 5 | 2.10 | 5 |
农村居民点 | 13 | 1 | 0.30 | 20.00 | 10 | 2.50 | 5 |
其他建设用地 | 14 | 1 | 0.20 | 6.00 | 0.01 | 1.50 | 0.01 |
未利用地 | 15 | 1 | 0.22 | 1.45 | 5 | 0.045 | 5 |
Tab.2
Driving factors of water purification services"
驱动力类别 | 驱动力简称 | 驱动力指标 | 单位 |
---|---|---|---|
气候因素 | SUN | 日照百分率 | % |
ARH | 年均相对湿度 | % | |
TEM | 年均气温 | ℃ | |
地形因素 | ALT | 高程 | m |
SLOP | 坡度 | ° | |
水文因素 | WATER | 水网密度 | hm2/km2 |
土壤因素 | TN | 土壤表层(0~20 cm)的总氮含量 | mg/m3 |
TP | 土壤表层(0~20 cm)的总磷含量 | mg/m3 | |
TK | 土壤表层(0~20 cm)的总钾含量 | mg/m3 | |
SOM | 土壤表层(0~20 cm)的有机质含量 | mg/m3 | |
BULK | 土壤容重 | g/cm3 | |
SAND | 土壤表层(0~20 cm)的砂粒(0.05~2.0 mm)含量百分比 | % | |
SILT | 土壤表层(0~20 cm)的粉砂(0.002~0.05 mm)含量百分比 | % | |
CLAY | 土壤表层(0~20 cm)的粘粒(<0.002 mm)含量百分比 | % | |
植被覆盖度 | NDVI | 植被覆盖指数 | [-1, 1] |
人口经济情况 | POP | 人口密度 | 人/km2 |
GDP | 单位面积国内生产总值 | 万元/km2 | |
建设用地密度 | URBDENS | 城镇建设用地密度 | hm2/km2 |
VILLDENS | 农村居民点密度 | hm2/km2 | |
ROADENS | 道路密度 | km/km2 | |
农业发达程度 | AGRIPOP | 农业人口密度 | 人/km2 |
AGRIGDP | 单位面积农业生产总值 | 万元/km2 | |
AGRPOWER | 农业机械总动力 | kW/hm2 | |
FARINCM | 农民年收入 | 元/人 | |
植被用地状况 | ARABLE | 单位面积耕地比例 | % |
FOREST | 单位面积林地比例 | % | |
GRASS | 单位面积草地比例 | % | |
WETLAND | 单位面积湿地比例 | % | |
区位可达性 | DISWAT | 离水体的距离 | m |
DISURB | 离城镇的距离 | m | |
DISVILL | 离农村的距离 | m |
Tab.3
Regression analysis results of driving factors of water purification services variation in the study area"
驱动力类型 | 驱动力 | 氮输出量变化的回归结果 | 磷输出量变化的回归结果 | |||||
---|---|---|---|---|---|---|---|---|
回归系数 | 标准差 | t值 | 回归系数 | 标准差 | t值 | |||
气候因子 | 日照百分率 | -3.935*** | 0.513 | -7.660 | -2.258*** | 0.419 | -5.390 | |
相对湿度 | -7.022*** | 0.531 | -13.220 | -6.017*** | 0.435 | -13.840 | ||
年均气温 | -4.313*** | 0.840 | -5.130 | -2.365*** | 0.687 | -3.440 | ||
地形因子 | 高程 | -0.582*** | 0.025 | -22.970 | -0.537*** | 0.021 | -25.930 | |
坡度 | 0.003 | 0.004 | 0.760 | 0.000 | 0.005 | -0.060 | ||
水文因子 | 水网密度 | -6.382*** | 0.476 | -13.420 | -4.144*** | 0.480 | -8.630 | |
土壤因子 | 土壤表层总氮含量 | 0.149*** | 0.028 | 5.410 | 0.123*** | 0.023 | 5.410 | |
土壤表层总磷含量 | -0.202*** | 0.029 | -7.050 | 0.164*** | 0.023 | 7.010 | ||
土壤表层总钾含量 | -0.205*** | 0.043 | -4.740 | -0.153*** | 0.036 | -4.300 | ||
土壤表层有机质含量 | 0.148*** | 0.038 | 3.890 | 0.193*** | 0.053 | 3.650 | ||
土壤容重 | -0.320* | 0.185 | 1.730 | 0.131 | 0.084 | 1.570 | ||
土壤表层砂粒含量比 | 0.217*** | 0.072 | -3.020 | 0.163*** | 0.059 | -2.750 | ||
土壤表层粉砂含量比 | -0.360*** | 0.052 | 6.910 | -0.253*** | 0.043 | 5.910 | ||
土壤表层粘粒含量比 | -0.097** | 0.043 | -2.230 | -0.128*** | 0.036 | -3.510 | ||
植被因子 | 植被覆盖指数 | -0.281** | 0.126 | -2.220 | -0.012** | 0.006 | -2.080 | |
人口经济因子 | 单位面积GDP | 0.009 | 0.010 | 0.860 | 0.004 | 0.009 | 0.430 | |
人口密度 | 0.001 | 0.005 | 0.140 | 0.002 | 0.002 | 1.220 | ||
建设用地密度 | 城镇用地密度 | -3.008 | 1.936 | -1.550 | 3.444** | 1.584 | 2.170 | |
农村居民点密度 | 2.198*** | 0.514 | 4.270 | 2.242*** | 0.526 | 4.260 | ||
道路密度 | -0.005 | 0.004 | -1.270 | -0.006** | 0.003 | -2.030 | ||
农业发展因子 | 农业人口密度 | 0.194** | 0.101 | 2.930 | 0.162** | 0.082 | -1.970 | |
农业GDP | 0.050 | 0.061 | 0.820 | 0.031 | 0.045 | 0.690 | ||
农业机械总动力 | 0.022 | 0.044 | 0.500 | 0.022 | 0.036 | 0.610 | ||
农民年收入 | 0.041 | 0.069 | 0.590 | 0.016 | 0.055 | 0.280 | ||
植被用地因子 | 耕地比例 | 1.324*** | 0.212 | 6.240 | 1.159*** | 0.353 | 3.280 | |
林地比例 | -0.375*** | 0.065 | 2.890 | -0.123** | 0.217 | -2.030 | ||
草地比例 | -2.343 | 1.499 | -1.560 | -1.972 | 1.221 | -1.610 | ||
湿地比例 | -0.411 | 0.428 | -0.960 | -0.831** | 0.467 | -2.100 | ||
区位可达性因子 | 离水体的距离 | 0.459*** | 0.006 | 77.680 | 0.081*** | 0.019 | 4.350 | |
离城镇的距离 | 0.016*** | 0.004 | 4.160 | -0.039*** | 0.003 | -12.140 | ||
离农村的距离 | -0.025*** | 0.003 | -7.830 | -0.065*** | 0.003 | -23.850 | ||
常量 | 4.402 | 11.333 | 0.390 | -3.238 | 9.212 | -0.350 |
[1] |
白杨, 郑华, 庄长伟, 等. 2013. 白洋淀流域生态系统服务评估及其调控[J]. 生态学报, 33(3): 711-717.
doi: 10.5846/stxb201203270417 |
[Bai Y, Zheng H, Zhuang C W, et al.2013. Ecosystem services valuation and its regulation in Baiyangdian Basin: Based on InVEST model. Acta Ecologica Sinica, 33(3): 711-717. ]
doi: 10.5846/stxb201203270417 |
|
[2] | 陈晓红, 周宏浩. 2018. 城市化与生态环境关系研究热点与前沿的图谱分析[J]. 地理科学进展, 37(9): 1171-1185. |
[Chen X H, Zhou H H.2018. Research hotspots and prospects of urbanization and ecological environment relationship based on visual knowledge mapping. Progress in Geography, 37(9): 1171-1185. ] | |
[3] |
段亮, 段增强, 夏四清. 2006. 太湖旱地非点源污染定量化研究[J]. 水土保持通报, 26(6): 40-43.
doi: 10.3969/j.issn.1000-288X.2006.06.010 |
[Duan L, Duan Z Q, Xia S Q.2006. Quantification of non-point pollution from uplands in Taihu Lake Catchment. Bulletin of Soil and Water Conservation, 26(6): 40-43. ]
doi: 10.3969/j.issn.1000-288X.2006.06.010 |
|
[4] |
黄林, 王峰, 周立江, 等. 2012. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 32(19): 6110-6119.
doi: 10.5846/stxb201108281254 |
[Huang L, Wang F, Zhou L J, et al.2012. Root distribution in the different forest types and their relationship to soil properties. Acta Ecologica Sinica, 32(19): 6110-6119. ]
doi: 10.5846/stxb201108281254 |
|
[5] |
纪迪, 张慧, 沈渭寿, 等. 2013. 太湖流域下垫面改变与气候变化的响应关系[J]. 自然资源学报, 28(1): 51-62.
doi: 10.11849/zrzyxb.2013.01.006 |
[Ji D, Zhang H, Shen W S, et al.2013. The response relationship between underlying surface changing and climate change in the Taihu Basin. Journal of Natural Resources, 28(1): 51-62. ]
doi: 10.11849/zrzyxb.2013.01.006 |
|
[6] |
李恒鹏, 杨桂山, 黄文钰, 等. 2007. 太湖上游地区面源污染氮素入湖量模拟研究[J]. 土壤学报, 44(6): 1063-1069.
doi: 10.11766/trxb200608240615 |
[Li H P, Yang G S, Huang W Y, et al.2007. Simulating fluxes of non-point source nitrogen from upriver region of Taihu Basin. Acta Peologica Sinica, 44(6): 1063-1069. ]
doi: 10.11766/trxb200608240615 |
|
[7] |
吕刚, 魏忠平, 高英旭, 等. 2013. 不同土地利用类型植物根系与土壤抗蚀性关系研究[J]. 干旱地区农业研究, 31(2): 111-115.
doi: 10.3969/j.issn.1000-7601.2013.02.021 |
[Lv G, Wei Z P, Gao Y X, et al.2013. Study on relationship between plant roots and soil anti-erodibility of different land utilization types. Agricultural Research in the Arid Areas, 31(2): 111-115. ]
doi: 10.3969/j.issn.1000-7601.2013.02.021 |
|
[8] | 吕文, 杨桂山, 万荣荣, 等. 2013. 太湖流域春季不同土地利用类型蒸散速率的比较[J]. 水土保持通报, 33(5): 202-209. |
[Lv W, Yang G S, Wan R R, et al.2013. Comparison study on evapotranspiation characteristics of different landuse types in Taihu Lake Wastershed. Bulletin of Soil and Water Conservation, 33(5): 202-209. ] | |
[9] | 王宁, 郭红岩, 王晓蓉, 等. 2008. 太湖河网地区农村非点源氮负荷: 以宜兴市大浦镇为例[J]. 生态学杂志, 27(4): 557-562. |
[Wang N, Guo H Y, Wang X R, et al.2008. Nitrogen load from ruralnon-point source in river network region, Taihu Lake: A case study from Dapu Town in Yixing City. Chinese Jurnal of Eology, 27(4): 557-562. ] | |
[10] |
王小治, 王爱礼, 尹微琴, 等. 2009. 太湖流域农业非点源污染优先识别区研究: 以昆山为例[J]. 农业环境科学学报, 28(9): 1874-1879.
doi: 10.3321/j.issn:1672-2043.2009.09.017 |
[Wang X Z, Wang A L, Yin W Q, et al.2009. Application of agricultural non-point source pollution potential index in typical area of Taihu: A case study in Kunshan City. Journal of Agro-Environment Science, 28(9): 1874-1879. ]
doi: 10.3321/j.issn:1672-2043.2009.09.017 |
|
[11] |
吴攀, 秦伯强, 于革, 等. 2015. 太湖上游流域经济发展对废水排放及入湖总磷的影响[J]. 湖泊科学, 27(6): 1107-1114.
doi: 10.18307/2015.0616 |
[Wu P, Qin B Q, Yu G, et al.2015. Effects of economic development on wastewater discharge and influent total phosphorus load in the upstream of Lake Taihu Basin. Journal of Lake Science, 27(6): 1107-1114. ]
doi: 10.18307/2015.0616 |
|
[12] | 夏敏, 班伟, 赵冰雪. 2013. 太湖流域非点源污染负荷估算系统的设计与应用[J]. 水土保持通报, 33(3): 197-201. |
[Xia M, Ban W, Zhao B X.2013. Design and application of norrpoint source pollution load estimating system in Taihu Lake Basin. Bulletin of Soil and Water Conservation, 33(3): 197-201. ] | |
[13] |
闫丽珍, 石敏俊, 王磊. 2010. 太湖流域农业面源污染及控制研究进展[J]. 中国人口·资源与环境, 20(1): 99-107.
doi: 10.3969/j.issn.1002-2104.2010.01.018 |
[Yan L Z, Shi M J, Wang L.2010. Review of agricultural non-point pollution in Taihu Lake and Taihu Basin. China Population, Resources and Environment, 20(1): 99-107. ]
doi: 10.3969/j.issn.1002-2104.2010.01.018 |
|
[14] |
闫庆武, 卞正富, 赵华. 2005. 人口密度空间化的一种方法[J]. 地理与地理信息科学, 21(5): 45-48.
doi: 10.3969/j.issn.1672-0504.2005.05.011 |
[Yan Q W, Bian Z F, Zhao H.2005. A method of spatialization of population density. Geography and Geo-Information Science, 21(5): 45-48. ]
doi: 10.3969/j.issn.1672-0504.2005.05.011 |
|
[15] |
赵文武, 刘月, 冯强, 等. 2018. 人地系统耦合框架下的生态系统服务[J]. 地理科学进展, 37(1): 139-151.
doi: 10.18306/dlkxjz.2018.01.015 |
[Zhao W W, Liu Y, Feng Q, et al.2018. Ecosystem services for coupled human and environment systems. Progress in Geography, 37(1): 139-151. ]
doi: 10.18306/dlkxjz.2018.01.015 |
|
[16] | Andrew M E, Wulder M A, Nelson T A, et al.2015. Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: A review[J]. GIScience & Remote Sensing, 52(3): 344-373. |
[17] |
Chen J, Cui T, Wang H, et al.2018. Spatio-temporal evolution of water-related ecosystem services: Taihu Basin, China[J]. PeerJ, 6: e5041. doi: 10.7717/peerj.5041.
doi: 10.7717/peerj.5041 |
[18] |
Gao J, Li F, Gao H, et al.2017. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China[J]. Journal of Cleaner Production, 163: S148-S155.
doi: 10.1016/j.jclepro.2016.01.049 |
[19] |
Grizzetti B, Lanzanova D, Liquete C, et al.2016. Assessing water ecosystem services for water resource management[J]. Environmental Science & Policy, 61: 194-203.
doi: 10.1016/j.envsci.2016.04.008 |
[20] |
Guswa A J, Brauman K A, Brown C, et al.2014. Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making[J]. Water Resources Research, 50(5): 4535-4544.
doi: 10.1002/2014WR015497 |
[21] |
Hou Y, Li B, Müller F, et al.2016. Ecosystem services of human-dominated watersheds and land use influences: A case study from the Dianchi Lake Watershed in China[J]. Environmental Monitoring & Assessment, 188(11): 1-19.
doi: 10.1007/s10661-016-5629-0 pmid: 27822787 |
[22] |
Hu Y, Peng J, Liu Y, et al.2018. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, Southwest China[J]. Science of the Total Environment, 625: 849-860.
doi: 10.1016/j.scitotenv.2017.12.340 pmid: 29306828 |
[23] |
Huang L, Ban J, Huang Y, et al.2013. Multi-angle indicators system of non-point pollution source assessment in rural areas: A case study near Taihu Lake[J]. Environmental Management, 51(4): 939-950.
doi: 10.1007/s00267-013-0024-x pmid: 23456193 |
[24] |
Jorda-Capdevila D, Gampe D, Huber V G, et al.2019. Impact and mitigation of global change on freshwater-related ecosystem services in southern Europe[J]. Science of the Total Environment, 651: 895-908.
doi: 10.1016/j.scitotenv.2018.09.228 |
[25] |
Jose-Manuel A M, Susana S S, Calabuig E D L.2011. Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: The role of uncertainty[J]. Landscape & Urban Planning, 101(2): 108-119.
doi: 10.1016/j.landurbplan.2011.01.009 |
[26] | Keeler B, Dalzell B J, Pennington D, et al.2013. Comparing SWAT and InVEST models for water yield and nutrient export: When is a simple model good enough for decision support? [R]. American Geophysical Union, Fall Meeting 2013. San Francisico: American Geophysical Union: 1135. |
[27] |
Kirsten H, Michel L, Stefano A.2018. How ecological feedbacks between human population and land cover influence sustainability[J]. PLOS Computational Biology, 14(8): e1006389.
doi: 10.1371/journal.pcbi.1006389 |
[28] |
La Notte A, Dalmazzone S.2018. Sustainability assessment and causality nexus through ecosystem service accounting: The case of water purification in Europe[J]. Journal of Environmental Management, 223: 964-974.
doi: 10.1016/j.jenvman.2018.06.072 |
[29] |
Li J, Jiang H, Bai Y, et al.2016. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China[J]. Ecological Indicators, 60: 1008-1016.
doi: 10.1016/j.ecolind.2015.09.002 |
[30] |
Liu M, Huang G H, Liao R F, et al.2013. Fuzzy two-stage non-point source pollution management model for agricultural systems: A case study for the Lake Tai Basin, China[J]. Agricultural Water Management, 121: 27-41.
doi: 10.1016/j.agwat.2013.01.006 |
[31] |
Mekonnen M M, Hoekstra A Y.2018. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and waterpollution levels: A high-resolution global study[J]. Water Resources Research, 54(1): 345-358.
doi: 10.1002/2017WR020448 |
[32] |
Nazmul H, Antje B, Lars R.2019. Interactions between freshwater ecosystem services and land cover changes in southern bangladesh: A perspective from short-term (seasonal) and long-term (1973-2014) scale[J]. Science of The Total Environment, 650: 132-143.
doi: 10.1016/j.scitotenv.2018.08.430 |
[33] |
Ochoa V, Urbina-Cardona N.2017. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges[J]. Ecosystem Services, 26: 155-169.
doi: 10.1016/j.ecoser.2017.06.011 |
[34] |
Ouyang Z Y, Zhang H, Xiao Y, et al.2016. Improvements in ecosystem services from investments in natural capital[J]. Science, 352: 1455-1459.
doi: 10.1126/science.aaf2295 pmid: 27313045 |
[35] |
Pennington D N, Dalzell B, Nelson E, et al.2017. Cost-effective land use planning: Optimizing land use and land management patterns to maximize social benefits[J]. Ecological Economics, 139: 75-90.
doi: 10.1016/j.ecolecon.2017.04.024 |
[36] |
Qi W, Li H, Zhang Q, et al.2019. Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China's Han River Basin[J]. Ecological Engineering, 126: 64-73.
doi: 10.1016/j.ecoleng.2018.11.001 |
[37] | Redhead J W, May L, Oliver T H, et al.2017. National scale evaluation of the InVEST nutrient retention model in the United Kingdom[J]. Science of the Total Environment, 610-611: 666-677. |
[38] | Reidsma P, Feng S Y, Van Loon M, et al.2012. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China[J]. Environmental Science & Policy, 18(4): 66-76. |
[39] |
Salvia-Castellvi M, Iffly J F, Borght P V, et al.2005. Dissolved and particulate nutrient export from rural catchments: A case study from Luxembourg[J]. Science of the Total Environment, 344(1-3): 51-65.
doi: 10.1016/j.scitotenv.2005.02.005 pmid: 15907510 |
[40] |
Seppelt R, Dormann C, Eppink F V, et al.2011. A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead[J]. Journal of Applied Ecology, 48(3): 630-636.
doi: 10.1111/j.1365-2664.2010.01952.x |
[41] |
Sharps K, Masante D, Thomas A, et al.2017. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment[J]. Science of the Total Environment, 584-585: 118-130.
doi: 10.1016/j.scitotenv.2016.12.160 pmid: 28147292 |
[42] |
Shi X Z, Wang H J, Warner E D, et al.2010. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales[J]. Geoderma, 154(1): 344-350.
doi: 10.1016/j.geoderma.2009.12.017 |
[43] |
Sun X, Crittenden J C, Li F, et al.2018. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta metropolitan area, USA[J]. Science of the Total Environment, 622-623: 974-987.
doi: 10.1016/j.scitotenv.2017.12.062 pmid: 29890614 |
[44] |
Wong C P, Jiang B, Kinzig A P, et al.2015. Linking ecosystem characteristics to final ecosystem services for public policy[J]. Ecology Letters, 18(1): 108-118.
doi: 10.1111/ele.12389 pmid: 25394857 |
[45] |
Xiao S, Lu Z, Feng L, et al.2018. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China[J]. Ecological Indicators, 94: 117-129.
doi: 10.1016/j.ecolind.2018.06.049 |
[46] |
Xu X, Yang G, Tan Y, et al.2016. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020[J]. Science of the Total Environment, 554-555: 7-16.
doi: 10.1016/j.scitotenv.2016.02.120 |
[47] |
Yan Y, Guan Q, Wang M, et al.2018. Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River Watershed, China[J]. Marine Pollution Bulletin, 133: 349-356.
doi: 10.1016/j.marpolbul.2018.05.050 |
[48] |
Zhou Y, Ma J, Zhang Y, et al.2017. Improving water quality in China: Environmental investment pays dividends[J]. Water Research, 118: 152-159.
doi: 10.1016/j.watres.2017.04.035 pmid: 28431347 |
[1] | SUN Yijie, LIU Xianfeng, REN Zhiyuan, DUAN Yifang. Spatiotemporal changes of droughts and heatwaves on the Loess Plateau during 1960-2016 [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 591-601. |
[2] | CAO Zhihong, HAO Jinmin, XING Hongping. Spatial-temporal change of Chinese resident food consumption carbon emissions and its driving mechanism [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 91-99. |
[3] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[4] | Kaihua LIAO, Ligang LV. Advances in research of hillslope soil hydrological processes in the humid region of Southeast China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 476-484. |
[5] | Yaolin LIU, Yang ZHANG, Yan ZHANG, Yi LIU, Haofeng WANG, Yanfang LIU. Conflicts between three land management red lines in Wuhan City: Spatial patterns and driving factors [J]. PROGRESS IN GEOGRAPHY, 2018, 37(12): 1672-1681. |
[6] | Shen ZHAO, Shaohui CHEN. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong Province based on station observations and MOD16 [J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 1040-1047. |
[7] | Yuanzheng LI, Ke YIN, Hongxuan ZHOU, Xiaolin WANG, Dan HU. Progress in urban heat island monitoring by remote sensing [J]. PROGRESS IN GEOGRAPHY, 2016, 35(9): 1062-1074. |
[8] | Guoqing LI, Xiaobing LI. Research progress of wind farm impact on the environment [J]. PROGRESS IN GEOGRAPHY, 2016, 35(8): 1017-1026. |
[9] | Shengyun WANG. Driving factors and spatiotemporal differentiation of human well-being change in China [J]. PROGRESS IN GEOGRAPHY, 2016, 35(5): 632-643. |
[10] | Xi HUANG, Zhonggen WANG, Yanfang SANG, Moyuan YANG, Xiaocong LIU, Tongliang GONG. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 339-348. |
[11] | rrJiangbin YIN. Advances in research on driving factors of return migration and employment behavior of migrants [J]. PROGRESS IN GEOGRAPHY, 2015, 34(9): 1084-1095. |
[12] | Jian HU, Yihe LÜ. Research progress on stochastic soil moisture dynamic model [J]. PROGRESS IN GEOGRAPHY, 2015, 34(3): 389-400. |
[13] | Haoming XIA, Ainong LI, Wei ZHAO, Jinhu BIAN, Guangbin LEI. Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring, 2001-2010 [J]. PROGRESS IN GEOGRAPHY, 2015, 34(10): 1297-1305. |
[14] | NIU Pinyi, LU Yuqi, PENG Qian. Driving factors of urbanization in Jiangsu Province based on quantile regression [J]. PROGRESS IN GEOGRAPHY, 2013, 32(3): 372-380. |
[15] | ZHANG Leqin, CHEN Suping, WANG Wenqin, XU Xinwang. Research on the Driving Factor Measurement of the Construction Land Expansion in Chizhou City, Anhui Province: Based on the STIRPAT Model [J]. PROGRESS IN GEOGRAPHY, 2012, 31(9): 1235-1242. |
|