PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (2): 175-190.doi: 10.18306/dlkxjz.2019.02.003
• Reviews • Previous Articles Next Articles
Hui ZHANG1,2(), Cheng LI3, Jiong CHENG3, Zhifeng WU4,*(
), Yanyan WU4
Received:
2018-03-30
Revised:
2018-09-14
Online:
2019-02-28
Published:
2019-02-28
Contact:
Zhifeng WU
E-mail:huihui945726@163.com;gzuwzf@163.com
Supported by:
Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability[J].PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190.
Tab. 1
Methods used in urban flood risk assessment cases"
案例 | 洪涝源类型 | 方法 | 气候变与 城市扩张 | 结果形式 | |||
---|---|---|---|---|---|---|---|
危险性 | 暴露性 | 脆弱性 | 综合 | ||||
城市雨季洪涝 | 水文水力学模型 | 基于普查数据、实地调查的GIS空间分析 | 多准则指标法 | GIS的多准则指标法 | — | 风险等级图(半定量) | |
城市雨季洪涝 | SCS/UFSM模型 | 实地调查的GIS空间分析 | 灾损曲线 | EAD | — | 损失值(定量) | |
城市河流洪涝 | MLFP-2D模型 | 土地利用图的GIS空间分析 | 灾损曲线 | EAD | — | 同上 | |
城市河流洪涝 | FloodCalc模型 | 基于普查数据、实地调查的GIS空间分析 | 灾损曲线,指标法 | 预期损失函数/GIS的多准则指标法 | — | 风险等级图、损失值 | |
城市河流洪涝 | 水文地貌法 | 基于普查数据、实地调查的GIS空间分析 | — | — | — | 风险等级图 | |
城市河流洪涝 | Quasi-2D 模型 | 基于普查数据、实地调查的GIS空间分析 | 灾损曲线,指标法 | 预期损失函数 | — | 损失值 | |
城市河流洪涝 | 历史灾情法 | 实地调查的GIS空间分析 | 多准则指标法 | 基于GIS的多准则指标法 | — | 风险等级图 | |
沿海洪涝 | MIKE 21模型 | 基于土地利用图GIS空间分析 | 实地调查 | GIS空间分析 | — | 风险等级图 | |
城市河流与沿海洪涝 | — | 多准则指标法 | 多准则指标法 | 空间模糊逻辑方法 | — | 风险等级图 | |
城市雨季/河流洪涝 | 综合水文水力学模型 | 基于土地利用图的GIS空间分析 | 灾损曲线 | EAD | 气候变化 | 损失值 | |
城市雨季洪涝 | MIKE Urban | GIS空间分析 | 灾损曲线 | EAD | 气候变化 | 损失值及成本效益评估 | |
城市雨季洪涝 | SWMM | GIS空间分析 | 排水管网脆弱性 | — | 气候变化,城市扩张 | 成本效益评估 |
[1] |
曹诗嘉, 方伟华, 谭骏. 2015. 基于海南省“威马逊”及“海鸥”台风次生海岸洪水灾后问卷调查的室内财产脆弱性研究[J]. 灾害学, 31(2): 188-195.
doi: 10.3969/j.issn.1000-811X.2016.02.036 |
[Cao S J, Fang W H, Tan J.2015. Vulnerability of building contents to coastal flooding based on questionnaire survey in hainan after typhoon Rammasun and Kalmeagi. Journal of Catastrophology, 31(2): 188-195. ]
doi: 10.3969/j.issn.1000-811X.2016.02.036 |
|
[2] |
陈鹏, 张继权, 孙滢悦, 等. 2016. 哈尔滨市区洪灾风险空间演变模式[J]. 南水北调与水利科技, 14(6): 27-32.
doi: 10.13476/j.cnki.nsbdqk.2016.06.005 |
[Chen P, Zhang J Q, Sun Y Y, et al.2016. Drought risk space evolution pattern in Haerbin. South-to-North Water Transfers and Water Science & Technology, 14(6): 27-32. ]
doi: 10.13476/j.cnki.nsbdqk.2016.06.005 |
|
[3] |
陈洋波, 周浩澜, 张会, 等. 2015. 东莞市内涝预报模型研究[J]. 武汉大学学报(工学版), 48(5): 608-614.
doi: 10.14188/j.1671-8844.2015-05-003 |
[Chen Y B, Zhou H L, Zhang H, et al.2015. Urban waterlogging model for Dongguan City. Engineering Journal of Wuhan University, 48(5): 608-614. ]
doi: 10.14188/j.1671-8844.2015-05-003 |
|
[4] | 初祁, 彭定志, 徐宗学, 等. 2014. 基于MIKE11和MIKE21的城市暴雨洪涝灾害风险分析[J].北京师范大学学报(自然科学版), 50(5): 446-451. |
[Chu Q, Peng D Z, Xu Z X, et al.2014. Risk analysis of urban flooding by using MIKE11 and MIKE21. Journal of Beijing Normal University (Natural Science), 50(5): 446-451. ] | |
[5] |
段丽瑶, 解以扬, 陈靖, 等. 2014. 基于城市内涝仿真模型的天津风暴潮灾害评估[J]. 应用气象学报, 25(3): 354-359.
doi: 10.11898/1001-7313.20140312 |
[Duan L Y, Xie Y Y, Chen J, et al.2014. Tianjin coastal strom surge disater assessment based on urban waterlogging simulation model. Jounal of Applied Meteorological Sicence, 25(3): 354-359. ]
doi: 10.11898/1001-7313.20140312 |
|
[6] |
黄国如, 黄维, 张灵敏, 等. 2015. 基于GIS和SWMM模型的城市暴雨积水模拟[J]. 水资源与水工程学报, 26(4): 1-6.
doi: 10.11705/j.issn.1672-643X.2015.04.01 |
[Huang G R, Huang W, Zhang L M, et al.2015. Simulation of rainstorm waterlogging in urban areas based on GIS and SWMM model. Journal of Water Resources & Water Engineering, 26(4): 1-6. ]
doi: 10.11705/j.issn.1672-643X.2015.04.01 |
|
[7] |
扈海波, 轩春怡, 诸立尚. 2013. 北京地区城市暴雨积涝灾害风险预评估[J]. 应用气象学报, 24(1): 99-108.
doi: 10.3969/j.issn.1001-7313.2013.01.010 |
[Hu H B, Xuan C Y, Zhu L S.2013. Pre-assessment of urban stormwater disaster risk in Beijing area. Journal of Applied Meteorological Science, 24(1): 99-108. ]
doi: 10.3969/j.issn.1001-7313.2013.01.010 |
|
[8] |
扈海波, 张艳莉. 2014. 暴雨灾害人员损失风险快速预评估模型[J]. 灾害学, 29(1): 30-36.
doi: 10.3969/j.issn.1000-811X.2014.01.006 |
[Hu H B, Zhang Y L.2014. Quick assessing model on casualty loss in rainstorms. Journal of Catastrophology, 29(1): 30-36. ]
doi: 10.3969/j.issn.1000-811X.2014.01.006 |
|
[9] | 姜鎏鹏. 2012. 口前镇居民住宅洪涝灾害风险评价研究[D]. 长春: 东北师范大学. |
[Jiang L P.Research on flood risk assessment of resident dwellings of Kouqian Town. Changchun, China: Northeast Normal University.] | |
[10] | 李国芳, 郑玲玉, 童奕懿, 等. 2013. 长江三角洲地区城市化对洪灾风险的影响评价[J]. 长江流域资源与环境, 22(3): 386-391. |
[Li G F, Zheng L Y, Tong Y Y, et al.2013. Effects evaluation of urbanization on flood risk in the Yangtze River Delt. Resources and Environment in the Yangtze Basin, 22(3): 386-391. ] | |
[11] |
刘耀龙, 陈振楼, 王军, 等. 2011. 经常性暴雨内涝区域房屋财(资)产脆弱性研究: 以温州市为例[J]. 灾害学, 26(2): 66-71.
doi: 10.3969/j.issn.1000-811X.2011.02.013 |
[Liu Y L, Chen Z L, Wang J, et al.2011. Study on property (capital) vulnerability of houses in regular rainstorm water-logging areas: Taking Wenzhou as a case study. Journal of Catastrophology, 26(2): 66-71. ]
doi: 10.3969/j.issn.1000-811X.2011.02.013 |
|
[12] |
刘勇, 张韶月, 柳林, 等. 2015. 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 34(4): 494-504.
doi: 10.11820/dlkxjz.2015.04.011 |
[Liu Y, Zhang S Y, Liu L, et al.2015. Research on urban flood simulation: A review from the smart city perspective. Progress in Geography, 34(4): 494-504. ]
doi: 10.11820/dlkxjz.2015.04.011 |
|
[13] | 刘泽照. 2018. 情景模拟视角下城市社区内涝灾害脆弱性分析[J]. 中国公共安全(学术版), (2): 53-56. |
[Liu Z Z.2018. Vulnerability analysis of rainstorm waterlogging in urban communities based on perspective of scenario simulation. China Public Security (Academy Edition), (2): 53-56. ] | |
[14] |
彭建, 魏海, 武文欢, 等. 2018. 基于土地利用变化情景的城市暴雨洪涝灾害风险评估: 以深圳市茅洲河流域为例[J]. 生态学报, 38(11): 3741-3755.
doi: 10.5846/stxb201708271546 |
[Peng J, Wei H, Wu W H, et al.2018. Storm flood disaster risk assessment in urban area based on the simulation of land use scenarios: A case of Maozhou Watershed in Shenzhen City. Acta Ecologica Sinica, 38(11): 3741-3755. ]
doi: 10.5846/stxb201708271546 |
|
[15] |
仇劲卫, 李娜, 程晓陶, 等. 2000. 天津市城区暴雨沥涝仿真模拟系统[J]. 水利学报, (11): 34-42.
doi: 10.3321/j.issn:0559-9350.2000.11.006 |
[Qiu J W, Li N, Cheng X T, et al.2000. The simulation system for heavy rainfall in Tianjin City. Journal of Hydraulic Engineering, (11): 34-42. ]
doi: 10.3321/j.issn:0559-9350.2000.11.006 |
|
[16] |
权瑞松. 2015. 多情景视角的上海中心城区地铁暴雨内涝暴露性分析[J]. 地理科学, 35(4): 471-475.
doi: 10.1016/S0955-2219(02)00073-0 |
[Quan R S.2015. Exposure analysis of rainstorm waterlogging on subway in central urban area of Shanghai based on multiple scenario perspective. Scientia Geographica Sinica, 35(4): 471-475. ]
doi: 10.1016/S0955-2219(02)00073-0 |
|
[17] | 权瑞松, 刘敏, 张丽佳, 等. 2011. 基于情景模拟的上海中心城区建筑暴雨内涝暴露性评价[J]. 地理科学, 31(2): 148-152. |
[Quan R S, Liu M, Zhang L J, et al.2011. Exposure assessment of rainstorm waterlogging on buildings in central urban area of Shanghai based on scenario simulation. Scientia Geographica Sinica, 31(2): 148-152. ] | |
[18] | 石勇. 2014. 基于情景模拟的居民住宅内部财产的水灾脆弱性评价[J]. 水电能源科学, 32(8): 134-137. |
[Shi Y.2014. Vulnerability assessment of property in residences in waterlogging disaster based on scenario simulation. Water Resources and Power, 32(8): 134-137. ] | |
[19] |
石勇. 2015. 城市居民住宅的暴雨内涝脆弱性评估: 以上海为例[J]. 灾害学, 30(3): 94-98.
doi: 10.3969/j.issn.1000-811X.2015.03.018 |
[Shi Y.2015. The vulnerability assessment of residences in rainstorm waterlogging in cities: A case study on Shanghai. Journal of Catastrophology, 30(3): 94-98. ]
doi: 10.3969/j.issn.1000-811X.2015.03.018 |
|
[20] |
石勇, 许世远, 石纯, 等. 2009. 洪水灾害脆弱性研究进展[J]. 地理科学进展, 28(1): 41-46.
doi: 10.11820/dlkxjz.2009.01.006 |
[Shi Y, Xu S Y, Shi C, et al.2009. A review on development of vulnerability assessment of floods. Progress in Geography, 28(1): 41-46. ]
doi: 10.11820/dlkxjz.2009.01.006 |
|
[21] | 石勇, 许世远, 石纯, 等. 2011. 基于情景模拟的上海中心城区居民住宅的暴雨内涝风险评价[J]. 自然灾害学报, 20(3): 177-182. |
[Shi Y, Xu S Y, Shi C, et al.2011. Risk assessment of rainstorm waterlogging on old-style residences downtown in Shanghai based on scenario simulation. Journal of Natural Disasters, 20(3): 177-182. ] | |
[22] | 宋晓猛, 张建云, 王国庆, 等. 2014. 变化环境下城市水文学的发展与挑战: II. 城市雨洪模拟与管理[J]. 水科学进展, 25(5): 752-764. |
[Song X M, Zhang J Y, Wang G Q,et al.2014. Development and challenges of urban hydrology in a changing environment: II. Urban stormwater modeling and management. Advances in Water Science, 25(5): 752-764. ] | |
[23] | 苏伯尼, 黄弘, 张楠. 2015. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 55(6): 684-690. |
[Su B N, Huang H, Zhang N.2015. Dynamic urban waterlogging risk assessment method based on scenario simulations. Journal of Tsinghua University (Science and Technology), 55(6): 684-690. ] | |
[24] | 王峰渊, 王杰, 丁宇海, 等. 2018. 基于GIS的暴雨灾害电网脆弱性评估研究[J]. 科技通报, 34(1): 79-83. |
[Wang F Y, Wang J, Ding Y H, et al.2018. Vulnerability assessment of power grid baesd on rainstorm hazards. Bulletin of Science and Technology, 34(1): 79-83. ] | |
[25] |
王昊, 张永祥, 唐颖, 等. 2018 暴雨洪水管理模型的城市内涝淹没模拟[J]. 北京工业大学学报, 44(2): 303-309.
doi: 10.11936/bjutxb2016120047 |
[Wang H, Zhang Y X, Tang Y, et al.2018. Simulation investigation of urban waterlogging submergence on storm water management model. Jounal of Bengjing University of Techonology, 44(2): 303-309. ]
doi: 10.11936/bjutxb2016120047 |
|
[26] | 王诗晨. 2015. 巢湖流域洪涝灾害脆弱性评价研究 [D]. 合肥: 安徽师范大学. |
[Wang S C.2015. Study on vulnerability assessment on flood disaster in Chaohu Basin. Hefei, China: Anhui Normal University. ] | |
[27] | 吴旭树. 2016. 变化环境下珠江三角洲地区暴雨内涝危险性时空演变研究: 以东莞市典型小区为例 [D]. 广州: 华南理工大学. |
[Wu X S.2016. Research on spatiotemporal variability of urban water logging hazards in the Pearl River Delta under changing environment: A case study in a typical district, Dongguan. South China University of Technology. ] | |
[28] | 谢志清, 杜银, 曾燕, 等. 2018. 江淮流域年极端降水事件分类特征及其致洪风险[J]. 中国科学(地球科学), 48(9): 1153-1168. |
[Xie Z Q, Du Y, Zeng Y, et al.2018. Classification of yearly extreme precipitation events and associated flood risk in the Yangtze-Huaihe River Valley. Science China (Earth Sciences), 61: 1341-1356. ] | |
[29] | 尹占娥. 2009. 城市自然灾害风险评估与实证研究 [D]. 上海: 华东师范大学. |
[Yin Z E.2009. Research of urban natural disaster risk assessment and case study. Shanghai, China: East China Normal University. ] | |
[30] |
尹占娥, 许世远, 殷杰, 等. 2010. 基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J]. 地理学报, 65(5): 553-562.
doi: 10.11821/xb201005005 |
[Yin Z E, Xu S Y, Yin J, et al.2010. Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging. Acta Geographica Sinica, 65(5): 553-562. ]
doi: 10.11821/xb201005005 |
|
[31] | 张建云, 宋晓猛, 王国庆, 等. 2014. 变化环境下城市水文学的发展与挑战: I. 城市水文效应[J]. 水科学进展, 25(4): 594-605. |
[Zhang J Y, Song X M, Wang G Q, et al.2014. Development and challenges of urban hydrology in a changing environment: I. Hydrological response to urbanization. Advances in Water Science, 25(4): 752-764. ] | |
[32] |
张念强, 马建明, 陆吉康, 等. 2013. 基于多类模型耦合的城市洪水风险分析技术研究[J].水利水电技术, 44(7): 125-128, 133.
doi: 10.3969/j.issn.1000-0860.2013.07.033 |
[Zhang N Q, Ma J M, Lu J K, et al.2013. Multi-models coupling based study on urban flood risk analysis technology. Water Resources and Hydropower Engineering, 44(7): 125-128, 133. ]
doi: 10.3969/j.issn.1000-0860.2013.07.033 |
|
[33] |
朱呈浩, 夏军强, 陈倩, 等. 2018. 基于SWMM模型的城市洪涝过程模拟及风险评估[J]. 灾害学, 33(02): 224-230.
doi: 10.3969/j.issn.1000-811X.2018.02.039 |
[Zhu C H, Xia J Q, Chen Q, et al.2018. SWMM-based urban flood modelling and risk evaluation. Journal of Catastrophology, 33(2): 224-230. ]
doi: 10.3969/j.issn.1000-811X.2018.02.039 |
|
[34] |
Adelekan I O, Asiyanbi A P.2015. Flood risk perception in flood-affected communities in Lagos, Nigeria[J]. Natural Hazards, 80: 445-469.
doi: 10.1007/s11069-015-1977-2 |
[35] |
Ajibade I, McBean G, Bezner-Kerr R.2013. Urban flooding in Lagos, Nigeria: Patterns of vulnerability and resilience among women[J]. Global Environmental Change, 23: 1714-1725.
doi: 10.1016/j.gloenvcha.2013.08.009 |
[36] |
Albano R, Mancusi L, Abbate A.2017. Improving flood risk analysis for effectively supporting the implementation of flood risk management plans: The case study of "Serio" Valley[J]. Environmental Science & Policy, 75: 158-172.
doi: 10.1016/j.envsci.2017.05.017 |
[37] |
Apel H, Aronica G T, Kreibich H, et al.2008. Flood risk analyses: How detailed do we need to be?[J]. Natural Hazards, 49: 79-98.
doi: 10.1007/s11069-008-9277-8 |
[38] |
Apel H, Trepat O M, Hung N N, et al.2016. Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho City, Mekong Delta, Vietnam[J]. Natural Hazards and Earth System Sciences, 16: 941-961.
doi: 10.5194/nhess-16-941-2016 |
[39] |
Araya-Munoz D, Metzger M J, Stuart N, et al.2017. A spatial fuzzy logic approach to urban multi-hazard impact assessment in concepcion, Chile[J]. Science of the Total Environment, 576: 508-519.
doi: 10.1016/j.scitotenv.2016.10.077 pmid: 27810740 |
[40] |
Arnold C L, Gibbons C J.1996. Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 62: 243-258.
doi: 10.1080/01944369608975688 |
[41] |
Balbi S, Villa F, Mojtahed V, Hegetschweiler KT, et al.2016. A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people[J]. Natural Hazards and Earth System Sciences, 16: 1323-1337.
doi: 10.5194/nhess-16-1323-2016 |
[42] |
Bertsch R, Glenis V, Kilsby C.2017. Urban flood simulation using synthetic storm drain networks[J]. Water, 9: 925.
doi: 10.3390/w9120925 |
[43] |
Birkmann J.2007. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications[J]. Environmental hazards, 7(1): 20-31.
doi: 10.1016/j.envhaz.2007.04.002 |
[44] |
Birkmann J, Cardona O D, Carreño M L, et al.2013. Framing vulnerability, risk and societal responses: The MOVE framework[J]. Natural Hazards, 67: 193-211.
doi: 10.1007/s11069-013-0558-5 |
[45] |
Bisht D S, Chatterjee C, Kalakoti S, et al.2016. Modeling urban floods and drainage using SWMM and MIKE Urban: A case study[J]. Natural Hazards, 84: 1-28.
doi: 10.1007/s11069-016-2455-1 |
[46] |
Budiyono Y, Aerts J, Brinkman J J, et al.2015. Flood risk assessment for delta mega-cities: A case study of Jakarta[J]. Natural Hazards, 75(1): 389-413.
doi: 10.1007/s11069-014-1327-9 |
[47] |
Camarasa-Belmonte A M, Soriano-García J.2012. Flood risk assessment and mapping in peri-urban Mediterranean environments using hydrogeomorphology: Application to ephemeral streams in the Valencia Region (Eastern Spain)[J]. Landscape and Urban Planning, 104: 189-200.
doi: 10.1016/j.landurbplan.2011.10.009 |
[48] |
Castro C P, Sarmiento J P, Edwards R, et al.2016. Disaster risk perception in urban contexts and for people with disabilities: case study on the city of Iquique (Chile)[J]. Natural Hazards, 86: 411-436.
doi: 10.1007/s11069-016-2698-x |
[49] | Chalkias C, Stathopoulos N, Kalogeropoulos K, et al.2016. Applied hydrological modeling with the use of geoinformatics: Theory and practice[M]// Habib M. Empirical modeling and its applications. London, UK: InTech Open: 61-86. |
[50] | Chapin T, Deyle R, Baker E.2008. A parcel-based GIS method for evaluating conformance of local land-use planning with a state mandate to reduce exposure to hurricane flooding[J]. Environment & Planning B: Planning & Design, 35: 261-279. |
[51] |
Chinh D, Dung N, Gain A, et al.2017. Flood loss models and risk analysis for private households in Can Tho City, Vietnam[J]. Water, 9: 313.
doi: 10.3390/w9050313 |
[52] |
Cho S Y, Chang H.2017. Recent research approaches to urban flood vulnerability, 2006-2016[J]. Natural Hazards, 88: 633-649.
doi: 10.1007/s11069-017-2869-4 |
[53] |
Christie E K, Spencer T, Owen D, et al.2017. Regional coastal flood risk assessment for a tidally dominant, natural coastal setting: North Norfolk, southern North Sea[J]. Coastal Engineering, 134: 177-190.
doi: 10.1016/j.coastaleng.2017.05.003 |
[54] |
Costabile P, Macchione F.2015. Enhancing river model set-up for 2-D dynamic flood modelling[J]. Environmental Modelling & Software, 67: 89-107.
doi: 10.1016/j.envsoft.2015.01.009 |
[55] |
Cutter S L, Barnes L, Berry M, et al.2008. A place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 18: 598-606.
doi: 10.1016/j.gloenvcha.2008.07.013 |
[56] | Dawson R, Hall J, Barr S, et al.2009. A blueprint for the integrated assessment of climate change in cities [R]. Tyndall Centre for Climate Change Research, Working Paper 129. |
[57] |
Dawson R J, Speight L, Hall J W, et al.2008. Attribution of flood risk in urban areas[J]. Journal of Hydroinformatics, 10: 275.
doi: 10.2166/hydro.2008.054 |
[58] |
De Bono A, Mora M G.2014. A global exposure model for disaster risk assessment[J]. International Journal of Disaster Risk Reduction, 10: 442-451.
doi: 10.1016/j.ijdrr.2014.05.008 |
[59] |
Dieperink C, Hegger D L T, Bakker M H N, et al.2016. Recurrent governance challenges in the implementation and alignment of flood risk management strategies: A review[J]. Water Resources Management, 30: 4467-4481.
doi: 10.1007/s11269-016-1491-7 |
[60] |
Domeneghetti A, Carisi F, Castellarin A, et al.2015. Evolution of flood risk over large areas: Quantitative assessment for the Po River[J]. Journal of Hydrology, 527: 809-823.
doi: 10.1016/j.jhydrol.2015.05.043 |
[61] |
Fatemi F, Ardalan A, Aguirre B, et al.2017. Social vulnerability indicators in disasters: Findings from a systematic review[J]. International Journal of Disaster Risk Reduction, 22: 219-227.
doi: 10.1016/j.ijdrr.2016.09.006 |
[62] |
Fekete A, Tzavella K, Baumhauer R.2017. Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context[J]. Natural Hazards, 86: 151-176.
doi: 10.1007/s11069-016-2720-3 |
[63] |
Fletcher T D, Andrieu H, Hamel P.2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art[J]. Advances in Water Resources, 51: 261-279.
doi: 10.1016/j.advwatres.2012.09.001 |
[64] |
Foudi S, Osés-Eraso N, Tamayo I.2015. Integrated spatial flood risk assessment: The case of Zaragoza[J]. Land Use Policy, 42: 278-292.
doi: 10.1016/j.landusepol.2014.08.002 |
[65] |
Gaudio R, Penna N, Viteritti V.2015. A combined methodology for the hydraulic rehabilitation of urban drainage networks[J]. Urban Water Journal, 13: 644-656.
doi: 10.1080/1573062X.2015.1012839 |
[66] |
Ghimire B, Chen A S, Guidolin M, et al.2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach[J]. Journal of Hydroinformatics, 15: 676.
doi: 10.2166/hydro.2012.245 |
[67] |
Gilroy K L, Mccuen R H.2012. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization[J]. Journal of Hydrology, 414: 40-48.
doi: 10.1016/j.jhydrol.2011.10.009 |
[68] | Giupponi C, Mojtahed V, Gain A K, et al.2015. Integrated risk assessment of water-related disasters[M]// Paron P, Baldassarre G D. Hydro-meteorological hazards, risks, and disasters. Amsterdam, Netherlands: Elsevier: 163-200. |
[69] |
Glas H, Jonckheere M, Mandal A, et al.2017. A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: Case study for Annotto Bay, Jamaica[J]. Natural Hazards, 88: 1867-1891.
doi: 10.1007/s11069-017-2920-5 |
[70] |
Glenis V, Mcgough A S, Kutija V, et al.2013. Flood modelling for cities using cloud computing[J]. Journal of Cloud Computing Advances Systems & Applications, 2(1): 7. doi:10.1186/2192-113X-2-7.
doi: 10.1186/2192-113X-2-7 |
[71] |
Haer T, Botzen W J W, de Moel H, et al.2017. Integrating household risk mitigation behavior in flood risk analysis: An agent-based model approach[J]. Risk Analysis, 37: 1977-1992.
doi: 10.1111/risa.12740 pmid: 27893160 |
[72] |
Hanson S, Nicholls R, Ranger N, et al.2011. A global ranking of port cities with high exposure to climate extremes[J]. Climatic Change, 104: 89-111.
doi: 10.1007/s10584-010-9977-4 |
[73] |
Haynes H, Haynes R, Pender G.2008. Integrating socio-economic analysis into decision-support methodology for flood risk management at the development scale (Scotland)[J]. Water & Environment Journal, 22: 117-124.
doi: 10.1111/j.1747-6593.2007.00086.x |
[74] |
Hsu W K, Huang P C, Chang C C, et al.2011. An integrated flood risk assessment model for property insurance industry in Taiwan[J]. Natural Hazards, 58: 1295-1309.
doi: 10.1007/s11069-011-9732-9 |
[75] | IPCC.2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change [M]. Cambridge, UK: Cambridge University Press. |
[76] | IPCC.2014.Climate change: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge, UK: Cambridge University Press. |
[77] |
Jalayer F, Risi R D, Paola F D, et al.2014. Probabilistic GIS-based method for delineation of urban flooding risk hotspots[J]. Natural Hazards, 73: 975-1001.
doi: 10.1007/s11069-014-1119-2 |
[78] |
Jenkins K, Surminski S, Hall J, et al.2017. Assessing surface water flood risk and management strategies under future climate change: Insights from an agent-based model[J]. Science of the Total Environment, 595: 159-168.
doi: 10.1016/j.scitotenv.2017.03.242 |
[79] |
Johnson C, Penning-Rowsell E, Parker D.2007. Natural and imposed injustices: The challenges in implementing "fair" flood risk management policy in Englan[J]. Geographical Journal, 173: 374-390.
doi: 10.1111/j.1475-4959.2007.00256.x |
[80] |
Kablan M K A, Dongo K, Coulibaly M.2017. Assessment of social vulnerability to flood in urban Côte d'Ivoire using the MOVE framework[J]. Water, 9: 292. doi: 10.3390/w9040292.
doi: 10.3390/w9040292 |
[81] |
Kandilioti G, Makropoulos C.2011. Preliminary flood risk assessment: The case of Athens[J]. Natural Hazards, 61: 441-468.
doi: 10.1007/s11069-011-9930-5 |
[82] |
Kasperson R E, Matson P A, Mccarthy J J, et al.2003. A framework for vulnerability analysis in sustainability science[J]. PNAS, 100: 8074.
doi: 10.1073/pnas.1231335100 pmid: 12792023 |
[83] |
Kebede A S, Nicholls R J.2012. Exposure and vulnerability to climate extremes: Population and asset exposure to coastal flooding in Dar es Salaam, Tanzania[J]. Regional Environmental Change, 12: 81-94.
doi: 10.1007/s10113-011-0239-4 |
[84] |
Kita S M.2017. Urban vulnerability, disaster risk reduction and resettlement in Mzuzu city, Malawi[J]. International Journal of Disaster Risk Reduction, 22: 158-166.
doi: 10.1016/j.ijdrr.2017.03.010 |
[85] | Koch A, Corsiez K, Defroidmont J, et al.2016. Evaluation of flow speed in urbanized areas and flood hazard mapping in flood risk prevention schemes[M]// Gourbesville P, Cunge J, Caignaert G. Advances in Hydroinformatics. Singapore: Springer: 47-58. |
[86] |
Koks E E, Jongman B, Husby T G, et al.2015 Combining hazard, exposure and social vulnerability to provide lessons for flood risk management[J]. Environmental Science & Policy, 47: 42-52.
doi: 10.1016/j.envsci.2014.10.013 |
[87] |
Kotzee I, Reyers B.2016. Piloting a social-ecological index for measuring flood resilience: A composite index approach[J]. Ecological Indicators, 60: 45-53.
doi: 10.1016/j.ecolind.2015.06.018 |
[88] |
Kreibich H, Botto A, Merz B, et al.2017. Probabilistic, multivariable flood loss modeling on the mesoscale with BT-FLEMO[J]. Risk Analysis, 37: 774.
doi: 10.1111/risa.12650 pmid: 27612204 |
[89] |
Krellenberg K, Welz J.2016. Assessing urban vulnerability in the context of flood and heat hazard: Pathways and challenges for indicator-based analysis[J]. Social Indicators Research, 132: 709-731.
doi: 10.1007/s11205-016-1324-3 |
[90] |
Kuklicke C, Demeritt D.2016. Adaptive and risk-based approaches to climate change and the management of uncertainty and institutional risk: The case of future flooding in Englan[J]. Global Environmental Change, 37: 56-68.
doi: 10.1016/j.gloenvcha.2016.01.007 |
[91] |
Lai W L, Wang H L, Wang C, et al.2017. Waterlogging risk assessment based on self-organizing map (SOM) artificial neural networks: A case study of an urban storm in Beijing[J]. Journal of Mountain Science, 14: 898-905.
doi: 10.1007/s11629-016-4035-y |
[92] | Lang M, Longo E, Aronica G T, et al.2016. Assessing fluvial flood risk in urban environments: A case study[C]. E3S Web of Conferences, 7: 11007. |
[93] |
Li C, Cheng X, Li N, et al.2016. A framework for flood risk analysis and benefit assessment of flood control measures in urban areas[J]. International Journal of Environmental Research and Public Health, 13(8): 787.
doi: 10.3390/ijerph13080787 pmid: 4997473 |
[94] |
Li M, Wu W, Wang J, et al.2016. Simulating and mapping the risk of surge floods in multiple typhoon scenarios: A case study of Yuhuan County, Zhejiang Province, China[J]. Stochastic Environmental Research and Risk Assessment, 31: 645-659.
doi: 10.1007/s00477-016-1238-2 |
[95] |
Liang Y, Jiang C, Ma L, et al.2017. Government support, social capital and adaptation to urban flooding by residents in the Pearl River Delta area, China[J]. Habitat International, 59: 21-31.
doi: 10.1016/j.habitatint.2016.11.008 |
[96] |
Lin N, Shullman E.2017. Dealing with hurricane surge flooding in a changing environment: Part I. Risk assessment considering storm climatology change, sea level rise, and coastal development[J]. Stochastic Environmental Research and Risk Assessment, 31: 2379-2400.
doi: 10.1007/s00477-016-1377-5 |
[97] |
Löwe R, Urich C, Sto. Domingo N, et al.2017. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations: A new generation of urban planning tools[J]. Journal of Hydrology, 550: 355-367.
doi: 10.1016/j.jhydrol.2017.05.009 |
[98] |
Maantay J, Maroko A.2009. Mapping urban risk: Flood hazards, race, & environmental justice in New York[J]. Applied Geography, 29: 111-124.
doi: 10.1016/j.apgeog.2008.08.002 |
[99] |
Mechler R, Bouwer L M, Linneroothbayer J, et al.2014. Managing unnatural disaster risk from climate extremes[J]. Nature Climate Change, 4: 235-237.
doi: 10.1038/nclimate2137 |
[100] | Merz B.2010. Review article "Assessment of economic flood damage"[J]. Natural Hazards & Earth System Sciences, 10: 735-740. |
[101] |
Merz B, Elmer F, Thieken A H.2009. Significance of "high probability/low damage" versus "low probability/high damage" flood events[J]. Natural Hazards & Earth System Sciences, 9: 1033-1046.
doi: 10.5194/nhess-9-1033-2009 |
[102] | Merz B, Kreibich H, Thieken A, et al.2004. Estimation uncertainty of direct monetary flood damage to buildings[J]. Natural Hazards & Earth System Sciences, 4: 153-163. |
[103] |
Meyer V, Scheuer S, Haase D.2009. A multicriteria approach for flood risk mapping exemplified at the Mulde River, Germany[J]. Natural hazards, 48(1): 17-39.
doi: 10.1007/s11069-008-9244-4 |
[104] |
Mojaddadi H, Pradhan B, Nampak H, et al.2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS[J]. Geomatics, Natural Hazards and Risk, 8: 1080-1102.
doi: 10.1080/19475705.2017.1294113 |
[105] |
Moore T L, Gulliver J S, Stack L, et al.2016. Stormwater management and climate change: Vulnerability and capacity for adaptation in urban and suburban contexts[J]. Climatic Change, 138: 491-504.
doi: 10.1007/s10584-016-1766-2 |
[106] | Moritz H, White K, Gouldby B.2016. An updated USACE approach to the evaluation of coastal total water levels for present and future flood risk analysis[J]. E3S Web of Conferences, 7: 01012. doi: 10.1051/e3sconf/20160701012. |
[107] |
Muis S, Güneralp B, Jongman B, et al.2015. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data[J]. Science of the Total Environment, 538: 445-457.
doi: 10.1016/j.scitotenv.2015.08.068 pmid: 26318682 |
[108] |
Müller A, Reiter J, Weiland U.2011. Assessment of urban vulnerability towards floods using an indicator-based approach: A case study for Santiago de Chile[J]. Natural Hazards and Earth System Science, 11: 2107-2123.
doi: 10.5194/nhess-11-2107-2011 |
[109] |
Nobre A D, Cuartas L A, Momo M R, et al.2016. HAND contour: A new proxy predictor of inundation extent[J]. Hydrological Processes, 30: 320-333.
doi: 10.1002/hyp.10581 |
[110] |
Oddo P C, Lee B S, Garner G G, et al.2017. Deep uncertainties in sea-level rise and storm surge projections: Implications for coastal flood risk management[J]. Risk Analysis. doi: 10.1111/risa.12888.
doi: 10.1111/risa.12888 pmid: 28873257 |
[111] |
Olbert A I, Comer J, Nash S, et al.2017. High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows: A Cork City example[J]. Coastal Engineering, 121: 278-296.
doi: 10.1016/j.coastaleng.2016.12.006 |
[112] | Patel D, Ramirez J, Srivastava P, et al.2017. Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling-A case study of Surat City, Lower Tapi Basin, India[C]// Geophysical Research Abstracts, Vol. 19, EGU 2017-1702. Vienna, Austria: EGU General Assembly: 1702. |
[113] |
Petrucci G, Bonhomme C.2014. The dilemma of spatial representation for urban hydrology semi-distributed modelling: Trade-offs among complexity, calibration and geographical data[J]. Journal of Hydrology, 517: 997-1007.
doi: 10.1016/j.jhydrol.2014.06.019 |
[114] | Pfeifer H R, Amiguet A, Brandvold V, et al.2017. Water-related risks in the area of Dakar, Senegal: Coastal aquifers exposed to climate change and rapid urban development[M]// Sudmeier-Rieux K, Fernández M, Gaillard J, et al. Identifying emerging issues in disaster risk reduction, migration, climate change and sustainable development . Basel, Switzerland:Springer: 53-65. |
[115] | Pradhan B.2011. GIScience tools for climate change related natural hazards and modelling [M]// Joshi P K, Singh T P, Joshi P K, et al. Geoinformatics for Climate Change Studies. New Delhi, India: TERI Press:337-392. |
[116] |
Pregnolato M, Ford A, Glenis V, et al.2017. Impact of climate change on disruption to urban transport networks from pluvial flooding[J]. Journal of Infrastructure Systems, 23: 04017015. doi: 10.1061/(ASCE)IS.1943-555X.0000372.
doi: 10.1061/(ASCE)IS.1943-555X.0000372 |
[117] |
Quan R S, Liu M, Lu M, et al.2010. Waterlogging risk assessment based on land use/cover change: A case study in Pudong new area, Shanghai[J]. Environmental Earth Sciences, 61: 1113-1121.
doi: 10.1007/s12665-009-0431-8 |
[118] |
Rimba A, Setiawati M, Sambah A, et al.2017. Physical flood vulnerability mapping applying geospatial techniques in Okazaki city, Aichi Prefecture, Japan[J]. Urban Science, 1: 7. doi: 10.3390/urbansci1010007.
doi: 10.3390/urbansci1010007 |
[119] |
Sadeghi-Pouya A, Nouri J, Mansouri N, et al.2017a. An indexing approach to assess flood vulnerability in the western coastal cities of Mazandaran, Iran[J]. International Journal of Disaster Risk Reduction, 22: 304-316.
doi: 10.1016/j.ijdrr.2017.02.013 |
[120] |
Sadeghi-Pouya A, Nouri J, Mansouri N, et al.2017b. Developing an index model for flood risk assessment in the western coastal region of Mazandaran, Iran[J]. Journal of Hydrology and Hydromechanics, 65(2): 134-145.
doi: 10.1515/johh-2017-0007 |
[121] |
Salvadore E, Bronders J, Batelaan O.2015. Hydrological modelling of urbanized catchments: A review and future directions[J]. Journal of Hydrology, 529: 62-81.
doi: 10.1016/j.jhydrol.2015.06.028 |
[122] |
Santos L B L, Carvalho T, Anderson L O, et al.2017. An RS-GIS-Based comprehensive impact assessment of floods: A case study in Madeira River, Western Brazilian Amazon[J]. IEEE Geoscience & Remote Sensing Letters, 14: 1-4.
doi: 10.1109/LGRS.2017.2726524 |
[123] | Schanze J, Zeman E, Marsalek J.2007. Flood risk management: Hazards, vulnerability and mitigation measures[M]. Vol. 67. Dordrecht, Netherlands: Springer: 3-4. |
[124] |
Sekovski I, Armaroli C, Calabrese L, et al.2015. Coupling scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy)[J]. Natural Hazards and Earth System Science, 15: 2331-2346.
doi: 10.5194/nhessd-3-2149-2015 |
[125] |
Shepard C C, Agostini V N, Gilmer B, et al.2012. Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York[J]. Natural Hazards, 60: 727-745.
doi: 10.1007/s11069-012-0159-8 |
[126] |
Slater L J, Villarini G.2016. Recent trends in U.S. flood risk[J]. Geophysical Research Letters, 43(24): 12428-12436. doi: 10.1002/2016GL071199.
doi: 10.1002/2016GL071199 |
[127] |
Smith A, Martin D, Cockings S.2014. Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk[J]. Applied Spatial Analysis and Policy, 9: 145-163.
doi: 10.1007/s12061-014-9110-6 |
[128] |
Sofia G, Roder G, Dalla Fontana G, et al.2017. Flood dynamics in urbanised landscapes: 100 years of climate and humans' interaction[J]. Scientific Reports, 7: 40527. doi: 10.1038/srep40527.
doi: 10.1038/srep40527 pmid: 5228191 |
[129] |
Speight L J, Hall J W, Kilsby C G.2017. A multi-scale framework for flood risk analysis at spatially distributed locations[J]. Journal of Flood Risk Management, 10: 124-137.
doi: 10.1111/jfr3.12175 |
[130] |
Takagi H, Tsurudome C, Thao N D, et al.2016. Ocean tide modelling for urban flood risk assessment in the Mekong Delta[J]. Hydrological Research Letters, 10: 21-26.
doi: 10.3178/hrl.10.21 |
[131] |
Tapia C, Abajo B, Feliu E, et al.2017. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities[J]. Ecological Indicators, 78: 142-155.
doi: 10.1016/j.ecolind.2017.02.040 |
[132] |
Teng J, Jakeman A J, Vaze J, et al.2017. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis[J]. Environmental Modelling & Software, 90: 201-216.
doi: 10.1016/j.envsoft.2017.01.006 |
[133] |
Thieken A H, Kienzler S, Kreibich H, et al.2016. Review of the flood risk management system in Germany after the major flood in 2013[J]. Ecology and Society, 21(2): 51. doi: 10.5751/ES-08547-210251.
doi: 10.5751/es-08547-210251 |
[134] |
Tran P, Shaw R, Chantry G, et al.2009. GIS and local knowledge in disaster management: A case study of flood risk mapping in Viet Nam[J]. Disasters, 33: 152-169.
doi: 10.1111/j.1467-7717.2008.01067.x pmid: 18513310 |
[135] |
Turner B L, Kasperson R E, Matson P A, et al.2003. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences, 100: 8074-8079.
doi: 10.1073/pnas.1231335100 pmid: 12792023 |
[136] | Vojinovic Z, Hammond M, Golub D, et al.2015. Holistic approach to flood risk assessment in areas with cultural heritage: A practical application in Ayutthaya, Thailan[D][J]. Natural Hazards, 81: 589-616. |
[137] |
Vu T T, Ranzi R.2017. Flood risk assessment and coping capacity of floods in central Vietnam[J]. Journal of Hydro-environment Research, 14: 44-60.
doi: 10.1016/j.jher.2016.06.001 |
[138] |
Wahab R, Tiong R.2016. Multi-variate residential flood loss estimation model for Jakarta: An approach based on a combination of statistical techniques[J]. Natural Hazards, 86: 779-804.
doi: 10.1007/s11069-016-2716-z |
[139] |
Wang Z, Lai C, Chen X, et al.2015. Flood hazard risk assessment model based on random forest[J]. Journal of Hydrology, 527: 1130-1141.
doi: 10.1016/j.jhydrol.2015.06.008 |
[140] |
Weis S W M, Agostini V N, Roth L M, et al.2016. Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure[J]. Climatic Change, 136: 615-629.
doi: 10.1007/s10584-016-1642-0 |
[141] |
Wheater H, Evans E.2009. Land use, water management and future flood risk[J]. Land Use Policy, 26: S251-S264.
doi: 10.1016/j.landusepol.2009.08.019 |
[142] |
Woodruff J D, Irish J L, Camargo S J.2013. Coastal flooding by tropical cyclones and sea-level rise[J]. Nature, 504: 44.
doi: 10.1038/nature12855 pmid: 24305147 |
[143] |
Yang L, Scheffran J, Qin H, et al.2015. Climate-related flood risks and urban responses in the Pearl River Delta, China[J]. Regional Environmental Change, 15(2): 379-391.
doi: 10.1007/s10113-014-0651-7 |
[144] |
Yang T H, Yang S C, Ho J Y, et al.2015. Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons[J]. Journal of Hydrology, 520: 367-378.
doi: 10.1016/j.jhydrol.2014.11.028 |
[145] |
Yin J, Ye M, Yin Z, et al.2014. A review of advances in urban flood risk analysis over China[J]. Stochastic Environmental Research and Risk Assessment, 29: 1063-1070.
doi: 10.1007/s00477-014-0939-7 |
[146] |
Yin Z E, Yin J, Xu S, et al.2011. Community-based scenario modelling and disaster risk assessment of urban rainstorm waterlogging[J]. Journal of Geographical Sciences, 21: 274-284.
doi: 10.1007/s11442-011-0844-7 |
[147] |
Zhou Q, Mikkelsen P S, Halsnæs K, et al.2012. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits[J]. Journal of Hydrology, 414-415: 539-549.
doi: 10.1016/j.jhydrol.2011.11.031 |
[148] | Zonensein J, Miguez M, De Magalhães L, et al.2008. Flood risk index as an urban management tool[C]. 11th International Conference on Urban Drainage. Edinburgh, UK: 1-10. |
[1] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[2] | CHEN Mingxing, HUANG Xinrong, HUANG Gengzhi, YANG Yanshan. New urbanization and informal employment: Scale, pattern, and social integration [J]. PROGRESS IN GEOGRAPHY, 2021, 40(1): 50-60. |
[3] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[4] | LI Zhixuan, HE Zhongyu, ZHANG Yiming, JIN Shuangshuang, WANG Xuemei, ZHU Jie, LIU Shicen. Impact of greenspace exposure on residents’ mental health: A case study of Nanjing City [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 779-791. |
[5] | XUE Qian, XIE Miaomiao, GUO Qiang, WANG Yanan, WU Rongrong, LIU Qi. Research progress on urban heat wave vulnerability assessment: A geographical perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 685-694. |
[6] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[7] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[8] | XIE Cheng, HUANG Bo, LIU Xiaoqian, ZHOU Tao, WANG Yu. Population exposure to heatwaves in Shenzhen based on mobile phone location data [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 231-242. |
[9] | LIU Di, CHEN Hai, GENG Tianwei, ZHANG Hang, SHI Qinqin. Spatiotemporal changes of regional ecological risks in Shaanxi Province based on geomorphologic regionalization [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 243-254. |
[10] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[11] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[12] | SHI Lifeng,HUANG Xianjin. Spatiotemporal differences of urban expansion along China’s Grand Canal [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1206-1216. |
[13] | Limin JIAO, Chen GONG, Gang XU, Ting DONG, Boen ZHANG, Zehui LI. Urban expansion dynamics and urban forms in three metropolitan areas—Tokyo, New York, and Shanghai [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 675-685. |
[14] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[15] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
|