PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (1): 139-152.doi: 10.18306/dlkxjz.2019.01.012
• Reviews • Previous Articles
Xiaoshu CAO(), Peiting HU, Dan LIU
Received:
2018-01-16
Revised:
2018-10-25
Online:
2019-01-28
Published:
2019-01-22
Supported by:
Xiaoshu CAO, Peiting HU, Dan LIU. Progress of research on electric vehicle charging stations[J].PROGRESS IN GEOGRAPHY, 2019, 38(1): 139-152.
Tab.1
Highly cited articles of international research on charging station location (Top 10)"
文献 | 文献题目 | 发表期刊 | 被引频次 |
---|---|---|---|
He et al, 2013 | Optimal deployment of public charging stations for plug-in hybrid electric vehicles | Transport RES B-METH | 96 |
Liu et al, 2013 | Optimal planning of electric-vehicle charging stations in distribution systems | IEEE Transactions on Power Delivery | 84 |
Dong et al, 2014 | Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data | Transport RES C-EMER | 62 |
Frade et al, 2011 | Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon,Portugal | Transport RES REC | 57 |
Mak et al, 2013 | Infrastructure planning for electric vehicles with battery swapping | Manage SCI | 53 |
Wang et al, 2013 | Traffic-constrained multi-objective planning of electric-vehicle charging stations | IEEE Transactions on Power Delivery | 43 |
Xi et al, 2013 | Simulation-optimization model for location of a public electric vehicle charging infrastructure | Transport RES D-TR E | 40 |
Nie et al, 2013 | A corridor-centric approach to planning electric vehicle charging infrastructure | Transport RES B-METH | 36 |
Sadeghi-Barzani et al, 2014 | Optimal fast charging station placing and sizing | Apply Energy | 34 |
Sathaye et al, 2013 | An approach for the optimal planning of electric vehicle infrastructure for highway corridors | Transport RES E-LOG | 32 |
Guo et al, 2015 | Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective | Apply Energy | 29 |
Tab.2
Highly cited articles of domestic research on charging station location (Top 10)"
文献 | 文献题目 | 发表期刊 | 被引频次 |
---|---|---|---|
徐凡等, 2009 | 电动汽车充电站布局规划浅析 | 华东电力 | 262 |
刘志鹏等, 2012 | 电动汽车充电站的最优选址和定容 | 电力系统自动化 | 196 |
刘自发等, 2012 | 基于量子粒子群优化算法的城市电动汽车充电站优化布局 | 中国电机工程学报 | 105 |
周洪超等, 2011 | 基于博弈论的电动汽车充电站选址优化模型研究 | 科技与产业 | 73 |
刘柏良等, 2015 | 含分布式电源及电动汽车充电站的配电网多目标规划研究 | 电网技术 | 71 |
李菱等, 2011 | 基于遗传算法的电动汽车充电站的布局规划 | 华东电力 | 64 |
葛少云等, 2012 | 电动汽车充电站规划布局与选址方案的优化方法 | 中国电力 | 47 |
张国亮等, 2011 | 多等级电动汽车充电站的选址与算法 | 山东大学学报(工学版) | 42 |
冯超等, 2012 | Delphi和GAHP集成的综合评价方法在电动汽车充电站选址最优决策中的应用 | 电力自动化设备 | 39 |
徐青山等, 2016 | 考虑驾驶人行为习惯及出行链的电动汽车充电站站址规划 | 电力系统自动化 | 26 |
高亚静等, 2013 | 城市电动汽车充电站两步优化选址方法 | 中国电力 | 23 |
Tab.3
High-frequency keywords of domestic and international research on charging station location"
国外选址研究高频度关键词 | 国内选址研究高频度关键词 | |||||||
---|---|---|---|---|---|---|---|---|
关键词 | 出现频次 | 中心性 | 出现年份 | 关键词 | 出现频次 | 中心性 | 出现年份 | |
electric vehicle | 55 | 0.38 | 2011 | 电动汽车 | 81 | 0.63 | 2009 | |
charging station | 15 | 0.21 | 2013 | 充电站 | 40 | 0.41 | 2009 | |
infrastructure | 13 | 0.13 | 2013 | 充电设施 | 15 | 0.17 | 2011 | |
model | 13 | 0.24 | 2012 | 布局规划 | 8 | 0.10 | 2009 | |
optimization | 9 | 0.28 | 2011 | 充电需求 | 6 | 0.11 | 2016 | |
location | 4 | 0.24 | 2011 | 规划 | 6 | 0.12 | 2013 | |
Stations | 3 | 0.21 | 2012 | 充电需求预测 | 4 | 0.02 | 2011 | |
network | 2 | 0.02 | 2014 | 规划布局 | 3 | 0.02 | 2017 | |
genetic algorithm | 2 | 0.20 | 2014 | 选址模型 | 3 | 0.00 | 2014 | |
Impact | 2 | 0.07 | 2013 | 优化规划 | 2 | 0.03 | 2012 |
Tab.4
Evaluation of charging station location"
文献 | 评价指标 | 评价方法 |
---|---|---|
Liu et al, 2012 | 交通便利性(巷道口数、道路条件、主要道路) 运行经济性(建设总投资、年运行成本、运行损耗成本) 建造技术适宜性(地理水文条件、变电站容量、变电站距离、综合利用条件) 合理影响(社会影响、环境影响、电力格网安全性影响) | GAHP |
Wang et al, 2013 | 自然因素(天气条件、地质条件、水文条件),管理因素(政府规划、政治环境、电动汽车分布、交通条件、土地利用条件),公共设施因素(电网情况、站点谐波污染问题、防爆防火条件),经济因素(总投资成本、年度运营成本) | 模糊AHP |
张成等, 2014 | 充电站负荷率、投资回收期、充电行驶里程、综合满意度 | |
Guo et al, 2015 | 环境指标(植物水文破坏程度、废弃物排放、减少温室气体排放、减少粉尘排放),经济指标(建设成本、年运营和维护成本、投资回报周期),社会指标(城市路网和电网发展规划协调性、交通便捷程度、服务能力、大众生活影响程度) | 模糊TOPSIS |
Yagcitekin et al, 2016 | 充电器数量、步行距离、变电站和停车区距离、人口和使用密度、可扩展性、可达性 | 排队-层次分析法QT-AHP |
Philipsen et al, 2016 | 多重利用、可靠、可达、习惯兼容、驾驶员和乘客安全、车辆安全、公共交通接驳 | 问卷调查 |
Wu et al, 2016 | 经济因素(建设成本、运行和维护成本、投资回收周期),技术可行性(变电所距离、电力系统影响、资源可用度),服务有效性(交通便利度、服务能力、服务半径),社会因素(未来扩张能力、当地居民态度、当地政府支持),环境因素(生态环境影响、废物处置空间可用性、节能效益、粉尘排放降低),土地因素(地形、土壤地质类型) | PROMETHEE ANP |
Zhao et al, 2016 | 经济指标(投资回报周期、总建设成本、年经济利润、内部回报利率、土地获取成本、年运营和维护成本、拆迁成本、道路造价),社会指标(服务区域EV保有量、服务区人口、服务半径、服务容量、居民专业性、居民消费习惯、交通便捷程度、居住生活水平影响、城市发展规划协调水平、公共设施水平),环境指标(水资源恶化、土壤和植物退化、废物排放、噪音污染、大气颗粒排放减少、工业电磁场、无线电干扰、温室气体排放、生态影响),技术指标(变电所容量允许、变电所距离、电能质量影响、电能平衡水平、电网安全影响、变压器载荷比、界面处电流裕度、电压波动、电力系统频率、谐波污染) | 模糊Delphi Fuzzy GRA-VIKOR |
[1] | 褚玉婧, 马良, 张惠珍. 2015. 时间满意逐渐覆盖电动汽车充电站选址及算法[J]. 数学的实践与认识, (10): 101-106. |
[Chu Y J, Ma L, Zhang H Z.2015. Location-allocation and its algorithm for gradual covering electric vehicle charging stations. Mathematics in Practice and Theory, (10): 101-106. ] | |
[2] | 高亚静, 郭艳东, 李天天. 2013. 城市电动汽车充电站两步优化选址方法[J]. 中国电力, 46(8): 143-147. |
[Gao Y J, Guo Y D, Li T T.2013. Optimal location of urban electric vehicle charging stations using a two-step method. China Electric Power, 46(8): 143-147. ] | |
[3] | 冯超, 周步祥, 林楠, 等. 2012. Delphi和GAHP集成的综合评价方法在电动汽车充电站选址最优决策中的应用[J]. 电力自动化设备, 32(9): 25-29. |
[Feng C, Zhou B X, Lin N, et al.2012. Application of comprehensive evaluation method integrating Delphi and GAHP in optimal siting of electric vehicle charging station. Electric Power Automation Equipment, 32(9): 25-29. ] | |
[4] | 葛少云, 冯亮, 刘洪, 等. 2012. 电动汽车充电站规划布局与选址方案的优化方法[J]. 中国电力, (11): 96-101. |
[Ge S Y, Feng L, Liu H, et al.2012. An optimization approach for the layout and location of electric vehicle charging stations. China Electric Power, (11): 96-101. ] | |
[5] | 宫娅宁, 秦红. 2017. 基于电动汽车充电需求的充电站选址定容研究[J]. 通信电源技术, 34(3): 57-62. |
[Gong Y N, Qin H.2017. Research on locationg and sizing of electric vehicles charging stations based on power-charging demand of electric vehicles. Telecom Power Technology, 34(3): 57-62. ] | |
[6] | 郭春林, 肖湘宁. 2013. 电动汽车充电基础设施规划方法与模型[J]. 电力系统自动化, (13): 70-75. |
[Guo C L, Xiao X N.2013. Planning method and model of electric vehicle charging infrastructure. Automation of Electric Power Systems, (13): 70-75. ] | |
[7] | 李菱, 李燕青, 姚玉海, 等. 2011. 基于遗传算法的电动汽车充电站的布局规划[J]. 华东电力, (6): 1004-1006. |
[Li L, Li Y Q, Yao Y H, et al.2011. Layout planning of electric vehicle charging stations based on genetic algorithm. East China Electric Power, (6): 1004-1006. ] | |
[8] | 刘柏良, 黄学良, 李军, 等. 2015. 含分布式电源及电动汽车充电站的配电网多目标规划研究[J]. 电网技术, (2): 450-456. |
[Liu B L, Huang X L, Li J, et al.2015. Multi-objective planning of distribution network containing distributed generation and electric vehicle charging stations. Power System Technology, (2): 450-456. ] | |
[9] | 刘锴, 孙小慧, 左志. 2015. 电动汽车充电站布局优化方法研究综述[J]. 武汉理工大学学报(交通科学与工程版), (3): 523-528. |
[Liu K, Sun X H, Zuo Z.2015. Review on location optimization of recharging stations for electric vehicles. Journal of Wuhan University of Technology (Transportation Science & Engineering), (3): 523-528. ] | |
[10] | 刘亮, 周羽生, 周文晴, 等. 2016. 电动汽车充电站选址规划评价体系研究[J]. 电测与仪表, (18): 1-5. |
[Liu L, Zhou Y S, Zhou W Q, et al.2016. Research on siting planning evaluation system of electric vehicle charging station. Electrical Measurement & Instrumentation, (18): 1-5. ] | |
[11] | 刘志鹏, 文福拴, 薛禹胜, 等. 2012. 电动汽车充电站的最优选址和定容[J]. 电力系统自动化, (3): 54-59. |
[Liu Z P, Wen F S, Xue Y S, et al.2012. Optimal siting and sizing of electric vehicle charging stations. Automation of Electric Power Systems, (3): 54-59. ] | |
[12] | 刘自发, 张伟, 王泽黎. 2012. 基于量子粒子群优化算法的城市电动汽车充电站优化布局[J]. 中国电机工程学报, (22): 39-45. |
[Liu Z F, Zhang W, Wang Z L.2012. Optimal planning of charging station for electric vehicle based on quantum PSO algorithm. Proceeding of the CSEE, (22): 39-45. ] | |
[13] | 陆坚毅, 杨超, 揭婉晨. 2017. 考虑绕行特征的电动汽车快速充电站选址问题及自适应遗传算法[J]. 运筹与管理, (1): 8-17. |
[Lu J Y, Yang C, Jie W C.2017. An adaptive-self genetic algorithm for solving electric vehicle fast recharging location problem with detour characteristic. Operations Research and Management Science, (1): 8-17. ] | |
[14] | 孙丽玮. 2012. 中国新能源汽车发展现状与对策研究[J]. 中国科技信息, (7): 135-141. |
[Sun L W.2012. Research on the development status and countermeasures of China's new energy vehicles. China Science and Technology Information, (7): 135-141. ] | |
[15] |
孙小慧, 刘锴, 左志. 2012. 考虑时空间限制的电动汽车充电站布局模型[J]. 地理科学进展, 31(6): 686-692.
doi: 10.11820/dlkxjz.2012.06.003 |
[Sun X H, Liu K, Zuo Z.2012. A spatiotemporal location model for locating electric vehicle charging stations. Progress in Geography, 31(6): 686-692. ]
doi: 10.11820/dlkxjz.2012.06.003 |
|
[16] | 吴丽霞, 王贝贝, 胡静, 等. 2016. 基于熵权模糊物元的电动汽车充电站选址研究[J]. 公路与汽运, (6): 45-47. |
[Wu L X, Wang B B, Hu J, et al.2016. Study on the location of ev charging station based on entropy weight fuzzy matter-element. Highways & Automotive Applications, (6): 45-47. ] | |
[17] | 徐凡, 俞国勤, 顾临峰, 等. 2009. 电动汽车充电站布局规划浅析[J]. 华东电力, (10): 1678-1682. |
[Xu F, Yu G Q, Gu L F, et al.2009. Tentative analysis of layout of electrical vehicle charging stations. East China Electric Power, (10):1678-1682. ] | |
[18] | 徐青山, 蔡婷婷, 刘瑜俊, 等. 2016. 考虑驾驶人行为习惯及出行链的电动汽车充电站站址规划[J]. 电力系统自动化, (4): 59-65. |
[Xu Q S, Cai T T, Liu Y J, et al.2016. Location planning of charging stations for electric vehicles based on drivers behaviors and travel chain. Automation of Electric Power Systems, (4): 59-65. ] | |
[19] | 杨珺, 张敏, 陈新. 2006. 一类带服务半径的服务站截流选址-分配问题[J]. 系统工程理论与实践, (1): 117-122. |
[Yang J, Zhang M, Chen X.2006. A class of the flow capturing location-allocation model with service radius. System Engineering—Theory and Practice, (1): 117-122. ] | |
[20] | 姚龙. 2015. 基于层次分析法和模糊评价法的电动汽车充电站选址研究[J]. 黑龙江电力, (4): 313-317. |
[Yao L.2015. Research on site selection for electric vehicle charging stations based on AHP and fuzzy evaluation method. Heilongjiang Electric Power, (4): 313-317. ] | |
[21] | 张成, 滕欢. 2014. 电动汽车充电站规划模型及评价方法[J]. 电力系统及其自动化学报, (1): 49-52. |
[Zhang C, Teng H.2014. Planning model and evaluation method for electric vehicle charging station. Journal of Power System and Automation, (1): 49-52. ] | |
[22] | 张港, 李明, 潘浩, 等. 2015. 市场化的电动汽车充电站规划布局研究[J]. 陕西电力, (4): 40-44. |
[Zhang G, Li M, Pan H, et al.2015. Marketization of electric vehicle charging station layout research. Shaanxi Electric Power, (4): 40-44. ] | |
[23] | 张国亮, 李波, 王运发. 2011. 多等级电动汽车充电站的选址与算法[J]. 山东大学学报(工学版), (6): 136-142. |
[Zhang G L, Li B, Wang Y F.2011. Location and algorithm of multi-level electric vehicle charging stations. Journal of Shandong University (Engineering Science), (6): 136-142. ] | |
[24] | 周洪超, 李海锋. 2011. 基于博弈论的电动汽车充电站选址优化模型研究[J]. 科技和产业, (2): 51-54. |
[Zhou H C, Li H F.2011. Optimization model of electric vehicle charging station siting based on game theory science. Technology and Industry, (2): 51-54. ] | |
[25] | Baouche F, Billot R, Trigui R, et al.2014. Electric vehicle charging stations allocation model [R]. Transport research arena (TRA) 5th conference: Transport solutions from research to deployment. |
[26] |
Berman O, Krass D.1998. Flow intercepting spatial interaction model: A new approach to optimal location of competitive facilities[J]. Location Science, 6(1-4): 41-65.
doi: 10.1016/S0966-8349(98)00047-3 |
[27] |
Capar I, Kuby M, Leon V J, et al.2013. An arc cover-path-cover formulation and strategic analysis of alternative-fuel station locations[J]. European Journal of Operational Research, 227(1): 142-151.
doi: 10.1016/j.ejor.2012.11.033 |
[28] |
Chen Z, Liu W, Yin Y.2017. Deployment of stationary and dynamic charging infrastructure for electric vehicles along traffic corridors[J]. Transportation Research Part C: Emerging Technologies, 77: 185-206.
doi: 10.1016/j.trc.2017.01.021 |
[29] |
Church R, ReVelle C.1974. The maximal covering location problem[J]. Papers of the Regional Science Association, 32: 101-118.
doi: 10.1007/BF01942293 |
[30] |
Colmenar-Santos A, de Palacio C, Borge-Diez D, et al.2014. Planning minimum interurban fast charging infrastructure for electric vehicles: Methodology and application to Spain[J]. Energies, 7(3): 1207-1229.
doi: 10.3390/en7031207 |
[31] |
Current J, Ratick S, Revelle C.1998. Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach[J]. European Journal of Operational Research, 110(3): 597-609.
doi: 10.1016/S0377-2217(97)00303-2 |
[32] |
Dong J, Liu C, Lin Z.2014. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data[J]. Transportation Research Part C: Emerging Technologies, 38(1): 44-55.
doi: 10.1016/j.trc.2013.11.001 |
[33] |
Farahani R Z, Steadieseifi M, Asgari N.2010. Multiple criteria facility location problems: A survey[J]. Applied Mathematical Modelling, 34(7): 1689-1709.
doi: 10.1016/j.apm.2009.10.005 |
[34] |
Frade I, Ribeiro A, Goncalo A G, et al.2011. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal[J]. Transportation Research Record: Journal of the Transportation Research Board, 2252:91-98.
doi: 10.3141/2252-12 |
[35] | Ge S Y, Feng L, Liu H, et al.2012. The planning of electric vehicle charging stations in the urban area[C]// Electric & Mechanical Engineering and Information Technology Conference.China: 1598-1604. |
[36] |
Ghamami M, Zockaie A, Yu N.2016. A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel[J]. Transportation Research Part C: Emerging Technologies, 68: 389-402.
doi: 10.1016/j.trc.2016.04.016 |
[37] | Ghosh A, MacLafferty S L.1987. Location strategies for retail and service firms[M]. Lexington Books. |
[38] |
Giménezgaydou D A, Ribeiro A S N, Gutiérrez J, et al.2016. Optimal location of battery electric vehicle charging stations in urban areas: A new approach[J]. International Journal of Sustainable Transportation, 10(5): 393-405.
doi: 10.1080/15568318.2014.961620 |
[39] |
González J, Alvaro R, Gamallo C, et al.2014. Determining electric vehicle charging point locations considering drivers' daily activities[J]. Procedia Computer Science, 32: 647-654.
doi: 10.1016/j.procs.2014.05.472 |
[40] | Goodchild M F, Noronha V T.1987. Location-allocation and impulsive shopping: The case of gasoline retailing[M]//Ghosh A, Rushton G. Spatial analysisand location-allocation models. Van Nostrand Reinhold, New York: 121-136. |
[41] |
Guo S, Zhao H R.2015. Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective[J]. Applied Energy, 158: 390-402.
doi: 10.1016/j.apenergy.2015.08.082 |
[42] |
Hakimi S L.1964. Optimum locations of switching centers and the absolute centers and medians of a graph[J]. Operations Research, 12(3): 450-459.
doi: 10.1287/opre.12.3.450 |
[43] |
He F, Wu D, Yin Y, et al.2013. Optimal deployment of public charging stations for plug-in hybrid electric vehicles[J]. Transportation Research Part B: Methodological, 47: 87-101.
doi: 10.1016/j.trb.2012.09.007 |
[44] |
He F, Yin Y, Lawphongpanich S.2014. Network equilibrium models with battery electric vehicles[J]. Transportation Research Part B: Methodological, 67(3): 306-319.
doi: 10.1016/j.trb.2014.05.010 |
[45] |
He F, Yin Y, Zhou J.2015. Deploying public charging stations for electric vehicles on urban road networks[J]. Transportation Research Part C: Emerging Technologies, 60: 227-240.
doi: 10.1016/j.trc.2015.08.018 |
[46] | Hodgson M J.1990. A flow-capturing location-allocation model[J]. Geographical Analysis, 22(3): 270-279. |
[47] | Hodgson M J, Rosing K E.1992. A network location-allocation model trading off flow capturing and p-median objectives[J]. Annals of Operations Research, 40(1): 247-260. |
[48] |
Hosseini M, Mirhassani S A.2015. Selecting optimal location for electric recharging stations with queue[J]. KSCE Journal of Civil Engineering, 19(7): 2271-2280.
doi: 10.1007/s12205-015-0153-2 |
[49] |
Hsu V N, Daskin M, Jones P C, et al.1995. Tool selection for optimal part production: A Lagrangian relaxation approach[J]. IIE Transactions, 27(4): 417-426.
doi: 10.1080/07408179508936758 |
[50] | Jia L, Hu Z, Liang W, et al.2014. A novel approach for urban electric vehicle charging facility planning considering combination of slow and fast charging[C]// 2014 IEEE International Conference on Power System Technology. Chengdu, China: 3354-3360. |
[51] |
Kang N, Feinberg F M, Papalambros P Y.2015. Integrated decision making in electric vehicle and charging station location network design[J]. Journal of Mechanical Design, 137(6): 061402.
doi: 10.1115/1.4029894 |
[52] |
Kim J G, Kuby M.2012. The deviation-flow refueling location model for optimizing a network of refueling stations[J]. International Journal of Hydrogen Energy, 37(6): 5406-5420.
doi: 10.1016/j.ijhydene.2011.08.108 |
[53] |
Kuby M, Lines L, Schultz R, et al.2009. Optimization of hydrogen stations in Florida using the flow-refueling location model[J]. International Journal of Hydrogen Energy, 34(15): 6045-6064.
doi: 10.1016/j.ijhydene.2009.05.050 |
[54] | Lam A Y S, Leung Y W, Chu X.2017. Electric vehicle charging station placement: Formulation, complexity, and solutions[J]. IEEE Transactions on Smart Grid, 5(6): 2846-2856. |
[55] |
Li S, Huang Y, Mason S J.2016. A multi-period optimization model for the deployment of public electric vehicle charging stations on network[J]. Transportation Research Part C: Emerging Technologies, 65: 128-143.
doi: 10.1016/j.trc.2016.01.008 |
[56] |
Lim S, Kuby M.2010. Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model[J]. European Journal of Operational Research, 204(1): 51-61.
doi: 10.1016/j.ejor.2009.09.032 |
[57] | Liu Y, Zhou B X, Feng C, et al.2012. Application of comprehensive evaluation method integrated by Delphi and GAHP in optimal siting of electric vehicle charging station[C]// 2012 International Conference on Control Engineering and Communication Technology. Shenyang, China: 88-91. |
[58] | Liu Z, Wen F, Ledwich G.2013. Optimal planning of electric-vehicle charging stations in distribution systems[J]. IEEE Transactions on Power Delivery, 28(1): 102-110. |
[59] |
Mak H Y, Rong Y, Shen Z J M.2013. Infrastructure planning for electric vehicles with battery swapping[J]. Management Science, 59(7): 1557-1575.
doi: 10.1287/mnsc.1120.1672 |
[60] |
Nie Y, Ghamami M.2013. A corridor-centric approach to planning electric vehicle charging infrastructure[J]. Transportation Research Part B: Methodological, 57:172-190.
doi: 10.1016/j.trb.2013.08.010 |
[61] | Philipsen R, Schmidt T, Heek J V, et al.2016. Fast-charging station here, please! User criteria for electric vehicle fast-charging locations[J]. Transportation Research Part F: Traffic Psychology & Behaviour, 40:119-129. |
[62] |
Philipsen R, Schmidt T, Ziefle M.2015. A charging place to be-users' evaluation criteria for the positioning of fast-charging infrastructure for electro mobility[J]. Procedia Manufacturing, 3: 2792-2799.
doi: 10.1016/j.promfg.2015.07.742 |
[63] | Rajabi-Ghahnavieh A, Sadeghi-Barzani P.2017. Optimal zonal fast charging station placement considering urban traffic circulation[J]. IEEE Transactions on Vehicular Technology, 66(1): 45-56. |
[64] |
Sadeghi-Barzani P, Rajabi-Ghahnavieh A, Kazemi-Karegar H.2014. Optimal fast charging station placing and sizing[J]. Applied Energy, 125(2): 289-299.
doi: 10.1016/j.apenergy.2014.03.077 |
[65] | Sathaye N, Kelley S.2013. An approach for the optimal planning of electric vehicle infrastructure for highway corridors[J]. Transportation Research Part E: Logistics & Transportation Review, 59(11):15-33. |
[66] |
Sun Z H, Zhou X S, Du J, et al.2017. When traffic flow meets power flow: On charging station deployment with budget constraints[J]. IEEE Transactions on Vehicular Technology, 66(4): 2915-2926.
doi: 10.1109/TVT.2016.2593712 |
[67] |
Toregas C, Swain R, Revelle C, et al.1971. The location of emergency service facilities[J]. Operations Research, 19(6): 1363-1373.
doi: 10.1287/opre.19.6.1363 |
[68] |
Wang G B, Xu Z, Wen F, et al.2013. Traffic-constrained multiobjective planning of electric-vehicle charging stations[J]. IEEE Transactions on Power Delivery, 28(4): 2363-2372.
doi: 10.1109/TPWRD.2013.2269142 |
[69] | Wang M, Liu K.2011. Optimization of electric vehicle charging station location based on game theory[C]// International Conference on Transportation, Mechanical, and Electrical Engineering. Changchun, China: 809-812. |
[70] |
Wang Y W, Lin C C.2009. Locating road-vehicle refueling stations[J]. Transportation Research Part E: Logistics and Transportation Review, 45(5): 821-829.
doi: 10.1016/j.tre.2009.03.002 |
[71] |
Wu Y N, Yang M, Zhang H B, et al.2016. Optimal site selection of electric vehicle charging stations based on a cloud model and the promethee method[J]. Energies, 9(3): 157. doi: 10.3390/en9030157.
doi: 10.3390/en9030157 |
[72] | Xi X, Sioshansi R, Marano V.2013. Simulation-optimization model for location of a public electric vehicle charging infrastructure[J]. Transportation Research Part D: Transport & Environment, 22(4): 60-69. |
[73] |
Xiang Y, Liu J Y, Li R, et al.2016. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates[J]. Applied Energy, 178: 647-659.
doi: 10.1016/j.apenergy.2016.06.021 |
[74] |
Yagcitekin B, Uzunoglu M, Karakas A.2016. A new deployment method for electric vehicle charging infrastructure[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 24(3): 1292-1305.
doi: 10.3906/elk-1311-221 |
[75] |
Yang J, Dong J, Hu L.2017. A data-driven optimization-based approach for siting and sizing of electric taxi charging stations[J]. Transportation Research Part C: Emerging Technologies, 77: 462-477.
doi: 10.1016/j.trc.2017.02.014 |
[76] |
Yi Z G, Bauer P H.2016. Optimization models for placement of an energy-aware electric vehicle charging infrastructure[J]. Transportation Research Part E: Logistics and Transportation Review, 91: 227-244.
doi: 10.1016/j.tre.2016.04.013 |
[77] | Zhang C, Cheng Y.2016. Research on joint planning model for EVs charging/swapping facilities[C]// 2016 China International Conference on Electricity Distribution. Xi'an, China: 1-8. |
[78] |
Zhao H, Li N.2016. Optimal siting of charging stations for electric vehicles based on fuzzy delphi and hybrid multi-criteria decision making approaches from an extended sustainability perspective[J]. Energies, 9(4): 270. doi: 10.3390/en9040270.
doi: 10.3390/en9040270 |
[1] | WANG Fan, LIN Yuexi, WANG Mingfeng. “Third space” or “infinite occasion”: Location choice and influencing factors of the new retail industry [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1522-1531. |
[2] | HU Guojian, LU Yuqi. Progress, thoughts, and prospect of urban network research based on enterprise perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1587-1596. |
[3] | REN Jiamin, MA Yanji. Research progress and prospects of green development from the perspective of geography [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1196-1209. |
[4] | LONG Dongping, LIU Lin, CHEN Jianguo, XIAO Luzi, SONG Guangwen, XU Chong. Impact of prior crime experiences of street robbers on subsequent crime location choices [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 815-828. |
[5] | LU Minghua, ZHOU Yueyan, LIU Hanchu, XU Xin. Spatiotemporal dynamics and influencing factors of direct investment in Hebei Province by Beijing’s enterprises [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 389-401. |
[6] | HUANG An, XU Yueqing, LU Longhui, LIU Chao, ZHANG Yibin, HAO Jinmin, WANG hui. Research progress of the identification and optimization of production-living-ecological spaces [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 503-518. |
[7] | XIE Cheng, HUANG Bo, LIU Xiaoqian, ZHOU Tao, WANG Yu. Population exposure to heatwaves in Shenzhen based on mobile phone location data [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 231-242. |
[8] | ZOU Lilin, LIU Yansui, WANG Yongsheng. Research progress and prospect of land-use conflicts in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 298-309. |
[9] | JIN Annan, LI Gang, WANG Jianpo, Muhammad Sajid MEHMOOD, YU Yue, LIN Zhe. Location choice and optimization of development of community-oriented new retail stores: A case study of Freshippo stores in Nanjing City [J]. PROGRESS IN GEOGRAPHY, 2020, 39(12): 2013-2027. |
[10] | GAO Genghe, WANG Yuchan, XU Zumu, GUO Yaqi, NIU Ning. Work location choice of returnee migrant workers:Case study of 45 villages in Henan Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(12): 2083-2093. |
[11] | YANG Jun, YOU Haolin, ZHANG Yuqing, JIN Cui. Research progress on human settlements: From traditional data to big data+ [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 166-176. |
[12] | Hong LIN, Lan LIN, Linying SHI, Zhiqiang ZHU. Progress and review of foreign researches on negotiation of leisure constraints [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 648-661. |
[13] | Dongsheng ZHAN, Wenzhong ZHANG, Li Chen, Xiaofen YU, Yunxiao DANG. Research progress and its enlightenment of urban public service facilities allocation [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 506-519. |
[14] | Jinting ZHANG, Yudan ZHAO, Yangge TIAN, Qingqing HE, Yanhua ZHUANG, Yunxi PENG, Song HONG. Spatial non-coupling of air pollutant emissions and particulate matter-related air quality: A case study in Wuhan City, China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 612-624. |
[15] | Lvhan DUAN, Debin DU, Xiaoyu HUANG. Spatial and temporal changes and influencing factors of the location of internet start-ups in Shanghai, China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(3): 383-394. |
|