PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (1): 126-138.doi: 10.18306/dlkxjz.2019.01.011
• Reviews • Previous Articles Next Articles
Mulin CHEN1,2(), Hongyan CAI2,*(
)
Received:
2018-04-03
Revised:
2018-09-16
Online:
2019-01-28
Published:
2019-01-22
Contact:
Hongyan CAI
E-mail:linmuchen@yeah.net;caihy@igsnrr.ac.cn
Supported by:
Mulin CHEN, Hongyan CAI. Interpolation methods comparison of VIIRS/DNB nighttime light monthly composites: A case study of Beijing[J].PROGRESS IN GEOGRAPHY, 2019, 38(1): 126-138.
Tab.1
Distribution of interpolation anomaly (nWcm-2sr-1)"
插补方法 | 5月 | 6月 | 7月 | |||||
---|---|---|---|---|---|---|---|---|
<0 均值 (个数) | >285 均值 (个数) | <0 均值(个数) | >285 均值(个数) | <0 均值(个数) | >285 均值(个数) | |||
三次样条插值 | -0.15 (899) | 312.11 (6) | -0.20 (1341) | 315.51 (3) | -0.21 (819) | 301.88 (2) | ||
三次Hermite插值 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
灰色预测模型 | -9.04 (16) | 0 (0) | -10.88 (16) | 0 (0) | -14.71 (14) | 0 (0) | ||
三次指数平滑 | -0.08 (710) | 297.36 (2) | -0.11 (850) | 290.64 (2) | -0.10 (1447) | 297.76 (4) |
Fig.2
Interpolation results of May: (a) is Visible Infrared Imaging Radiometer Suite Cloud Mask Stray Light (vcmsl) of May; (b) and (f) are cubic spline interpolation (spline) method's interpolation result and distribution of Dabs, respectively; (c) and (g) are cubic Hermite interpolation (Hermite) method's interpolation result and distribution of Dabs, respectively; (d) and (h) are gray model's (GM) interpolation result and distribution of Dabs, respectively; (e) and (i) are triple exponential smoothing (exponent) method's interpolation result and distribution of Dabs, respectively"
Fig.3
IInterpolation results of June: (a) is Visible Infrared Imaging Radiometer Suite Cloud Mask Stray Light (vcmsl) of June; (b) and (f) are cubic spline interpolation (spline) method's interpolation result and distribution of Dabs, respectively; (c) and (g) are cubic Hermite interpolation (Hermite) method's interpolation result and distribution of Dabs, respectively; (d) and (h) are gray model's (GM) interpolation result and distribution of Dabs, respectively; (e) and (i) are triple exponential smoothing (exponent) method’s interpolation result and distribution of Dabs, respectively"
Fig.4
Interpolation results of July: (a) is Visible Infrared Imaging Radiometer Suite Cloud Mask Stray Light (vcmsl) of July; (b) and (f) are cubic spline interpolation (spline) method's interpolation result and distribution of Dabs, respectively; (c) and (g) are cubic Hermite interpolation (Hermite) method's interpolation result and distribution of Dabs, respectively; (d) and (h) are gray model's (GM) interpolation result and distribution of Dabs, respectively; (e) and (i) are triple exponential smoothing (exponent) method's interpolation result and distribution of Dabs, respectively"
Tab.2
Classification of absolute difference value"
预测月份 | Dabs分级/(nWcm-2sr-1) | 三次样条插值 | 三次Hermite插值 | 灰色预测模型 | 三次指数平滑 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
比例/% | 平均值/ (nWcm-2sr-1) | 比例/% | 平均值/ (nWcm-2sr-1) | 比例/% | 平均值/ (nWcm-2sr-1) | 比例/% | 平均值/ (nWcm-2sr-1) | |||||||
5月 | 0~2 | 88.55 | 0.28 | 91.40 | 0.24 | 74.78 | 0.45 | 90.65 | 0.27 | |||||
2~10 | 10.04 | 4.41 | 8.05 | 4.09 | 22.18 | 4.49 | 8.66 | 4.09 | ||||||
10~30 | 1.30 | 14.54 | 0.52 | 14.56 | 2.99 | 13.86 | 0.62 | 14.28 | ||||||
≥30 | 0.11 | 46.19 | 0.03 | 41.03 | 0.05 | 42.37 | 0.07 | 51.18 | ||||||
ADabs/ (nWcm-2sr-1) | 0.93 | 0.64 | 1.77 | 0.72 | ||||||||||
6月 | 0~2 | 87.55 | 0.27 | 90.86 | 0.26 | 75.84 | 0.39 | 89.21 | 0.26 | |||||
2~10 | 10.94 | 4.34 | 8.42 | 4.01 | 20.89 | 4.49 | 9.83 | 4.21 | ||||||
10~30 | 1.34 | 14.87 | 0.62 | 15.08 | 3.12 | 14.09 | 0.85 | 14.50 | ||||||
≥30 | 0.17 | 209.37 | 0.10 | 314.35 | 0.15 | 228.50 | 0.11 | 293.43 | ||||||
ADabs/ (nWcm-2sr-1) | 1.26 | 0.98 | 2.01 | 1.09 | ||||||||||
7月 | 0~2 | 86.05 | 0.26 | 86.93 | 0.24 | 73.92 | 0.39 | 84.45 | 0.24 | |||||
2~10 | 11.13 | 4.76 | 10.52 | 4.88 | 21.69 | 4.68 | 10.59 | 4.98 | ||||||
10~30 | 2.59 | 14.94 | 2.35 | 14.48 | 4.13 | 14.41 | 4.60 | 15.58 | ||||||
≥30 | 0.24 | 83.30 | 0.20 | 82.59 | 0.26 | 67.36 | 0.36 | 63.70 | ||||||
ADabs/ (nWcm-2sr-1) | 1.34 | 1.23 | 2.08 | 1.68 |
Tab.3
Comparison of the four interpolation methods"
三次样条插值 | 三次Hermite插值 | 灰色预测模型 | 三次指数平滑 | |
---|---|---|---|---|
算法思想 | 多项式构造 | 多项式构造 | 一次累加序列拟合 | 原始值的权重累加 |
算法适用性 | 仅能插补中间缺失值 | 仅能插补中间缺失值 | 能插补、能预测 | 能插补、能预测 |
计算复杂度 | 简单 | 简单 | 简单 | 简单,但重复 |
插补精度 | 较高 | 较高 | 较低 | 较高 |
计算总时长/s | 9.756 | 9.623 | 9.952 | 1392.927 |
平均时长/s | 1.331E-04 | 1.313E-04 | 1.356E-04 | 1.900E-02 |
算法优点 | ① 不要求数据符合特定分布 ② 插值综合前后数据 ③ 运行速度快 ④ 插补精度高 | ① 不要求数据符合特定分布 ② 插值综合前后数据 ③ 运行速度快 ④ 插补精度高 ⑤ 不会出现异常值 | ① 不要求数据符合特定分布 ② 所需时序短,只需单侧有值 ③ 运行速度快 ④ 可用于预测 | ① 不要求数据符合特定分布,适用于周期波动非线性序列 ② 所需时序短,只需单侧有值 ③ 可用于预测 ④ 插补精度高 |
算法缺点 | ① 数据长度要求高,且要求两侧均有值 ② 容易受异常值影响 ③ 不可用于预测 | ① 数据长度要求高,且要求两侧均有值 ② 容易受异常值影响 ③ 不可用于预测 | ① 不可直接用于非负时间序列预测 ② 插补有效值空间范围小 | ① 运行速度较慢 |
[1] | 陈青燕, 梁丹, 徐文兵, 等. 2016. 一种线目标豪斯多夫相似距离度量指标[J]. 测绘科学, 41(8): 14-18. |
[Chen Q Y, Liang D, Xu W B, et al.2016. Study of the linear object similarity measure based on Hausdorff distance. Science of Surveying and Mapping, 41(8): 14-18. ] | |
[2] | 戴豪民, 许爱强. 2015. 基于张力格林样条的EMD均值曲线插值方法[J]. 计算机工程与设计, 36(2): 401-405. |
[Dai H M, Xu A X.2015. Interpolation approach of mean curve for EMD based on Green's spline in tension. Computer Engineering and Design, 36(2): 401-405. ] | |
[3] | 邓聚龙. 1982. 灰色控制系统[J]. 华中工学院学报, (3): 9-18. |
[Deng J L.1982. The gray control system. Journal of Huazhong University of Science and Technology, (3): 9-18. ] | |
[4] | 邓聚龙. 1986. 本征性灰色系统的主要方法[J]. 系统工程理论与实践, (1): 60-65. |
[Deng J L.1986. The main methods of intrinsic gray system. Systems Engineering—Theory & Practice, (1): 60-65. ] | |
[5] |
段功豪, 牛瑞卿, 赵艳南, 等. 2016. 基于动态指数平滑模型的降雨诱发型滑坡预测[J]. 武汉大学学报(信息科学版), 41(7): 958-962.
doi: 10.13203/j.whugis20140276 |
[Duan G H, Niu R Q, Zhao Y N, et al.2016. Rainfall-induced landslide prediction based on dynamic exponential smoothing model. Geomatics and Information Science of Wuhan University, 41(7): 958-962. ]
doi: 10.13203/j.whugis20140276 |
|
[6] | 甘祥前, 任超, 刘林波. 2018. 基于小波去噪的非等间距多点灰色预测模型[J]. 测绘地理信息, 43(3): 41-44. |
[Gan X Q, Ren C, Liu L B.2018. Non-equidistant multi-point gray prediction model based on wavelet danoising. Journal of Geomatics, 43(3): 41-44. ] | |
[7] | 顾朝林, 张悦, 翟炜, 等. 2016. 城市与区域定量研究进展[J].地理科学进展, 35(12): 1433-1446. |
[Gu C L, Zhang Y, Zhai W, et al.2016. Progress in urban and regional quantitative research. Progress in Geography, 35(12): 1433-1446. ] | |
[8] | 李峰, 孙广通, 王秋玲, 等. 2018. NPP-VIIRS夜间灯光数据的县级电力消费空间化研究[J]. 测绘与空间地理信息, 41(4): 8-11. |
[Li F, Sun G T, Wang Q L, et al.2018. Spatialization research of electricity consumptions at county level using NPP-VIIRS nighttime lights. Geomatics & Spatial Information Technology, 41(4): 8-11. ] | |
[9] | 李翔, 陈振杰, 吴洁璇, 等. 2017. 基于夜间灯光数据和空间回归模型的城市常住人口格网化方法研究[J]. 地球信息科学学报, 19(10): 1298-1305. |
[Li X, Chen Z J, Wu J X, et al.2017. Gridding methods of city permanent population based on night light data and spatial regression models. Journal of Geo-information Science, 19(10): 1298-1305. ] | |
[10] | 李欣欣, 何飞, 王利. 2018. 大连金普新区城镇空间拓展特征研究[J]. 地理空间信息, (1): 27-31. |
[Li X X, He F, Wang L.2018. Study on urban spatial expansion characteristics of Jinpu new district in Dalian. Geospatial Information, (1): 27-31. ] | |
[11] | 刘建文, 周玉科. 2018. 站点尺度的青藏高原时序NDVI重构方法比较与应用[J]. 地理科学进展, 37(3): 427-437. |
[Liu J W, Zhou Y K.2018. Comparison and application of NDVI time-series reconstruction methods at site scale on the Tibetan Plateau. Progress in Geography, 37(3): 427-437. ] | |
[12] | 刘敬强, 瓦哈甫·哈力克, 哈斯穆·阿比孜, 等. 2013. 新疆特色林果业种植对气候变化的响应[J]. 地理学报, 68(5): 708-720. |
[Liu J Q, Wahap H L K, Hasm A B Z, et al.2013. Responses of characteristic horticulture plant to climate change of Xinjiang. Acta Geographica Sinica, 68(5): 708-720. ] | |
[13] | 刘思峰, 杨英杰. 2015. 灰色系统研究进展(2004-2014)[J]. 南京航空航天大学学报, 47(1): 1-18. |
[Liu S F, Yang Y J.2015. Advances in grey system research (2004-2014). Journal of Nanjing University of Aeronautics & Astronautics, 47(1): 1-18. ] | |
[14] | 彭建, 李慧蕾, 刘焱序, 等. 2018. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 73(4): 701-710. |
[Peng J, Li H L, Liu Y X, et al.2018. Identification and optimization of ecological security pattern in Xiong'an new area. Acta Geographica Sinica, 73(4): 701-710. ] | |
[15] | 沈海迪, 万振凯. 2017. 基于指数平滑法的动态预测机制[J]. 计算机技术与发展, 27(7): 6-9. |
[Shen H D, Wan Z K.2017. A dynamic prediction mechanism based on exponential smoothing method. Computer Technology and Development, 27(7): 6-9. ] | |
[16] | 宋中民, 邓聚龙. 2001. 反向累加生成及灰色GOM(1,1)模型[J]. 系统工程, (1): 66-69. |
[Song Z M, Deng J L.2001. The accumulated generating operation in opposite direction and its use in gray model GOM(1,1). Systems Engineering, (1): 66-69. ] | |
[17] | 严兰兰, 韩旭里, 饶智勇. 2017. 具有指定多项式重构精度和连续阶的插值曲线构造方法[J]. 计算机辅助设计与图形学学报, 29(4): 707-719. |
[Yan L L, Han X L, Rao Z Y.Construction method of interpolation curve with given polynomial reconstruction precision and continuity order. Journal of Computer-Aided Design & Computer Graphics, 29(4): 707-719. ] | |
[18] | 张嘉望, 郭军献, 李福松. 2015. 基于最优平滑系数三次指数平滑法的转速预测[J]. 探测与控制学报, 37(5): 43-46. |
[Zhang J W, Guo J X, Li F S.2015. Rotation speed prediction based on cubic exponential smoothing method. Journal of Detection & Control, 37(5): 43-46. ] | |
[19] | 张晓瑞, 方创琳, 王振波, 等. 2013. 基于RBF神经网络的城市建成区面积预测研究: 兼与BP神经网络和线性回归对比分析[J]. 长江流域资源与环境, 22(6): 691-697. |
[Zhang X R, Fang C L, Wang Z B, et al.2013. Prediction of urban built-up area based on RBF neural network. Resources and Environment in the Yangtze Basin, 22(6): 691-697. ] | |
[20] | 赵杰, 花向红, 刘闯, 等. 2015. ARIMA-BP组合模型在高铁沉降预报中的应用研究[J]. 测绘地理信息, 40(4): 54-56. |
[Zhao J, Hua X H, Liu C, et al.2015. Application of ARIMA-BP model in the settlement prediction of high speed railway. Journal of Geomatics, 40(4): 54-56. ] | |
[21] | 赵志伟, 杨景明, 呼子宇, 等. 2016. 基于一次指数平滑法的自适应差分进化算法[J]. 控制与决策, 31(5): 790-796. |
[Zhao Z W, Yang J M, Hu Z Y, et al.2016. Self-adaptive differential evolution algorithm based on exponential smoothing. Control and Decision, 31(5): 790-796. ] | |
[22] |
Bennett M M, Smith L C.2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics[J]. Remote Sensing of Environment, 192: 176-197.
doi: 10.1016/j.rse.2017.01.005 |
[23] |
Chen X, Nordhaus W.2015. A test of the new VIIRS lights data set: Population and economic output in Africa[J]. Remote Sensing, 7(4): 4937-4947.
doi: 10.3390/rs70404937 |
[24] |
Elvidge C D, Baugh K E, Zhizhin M, et al.2013. Why VIIRS data are superior to DMSP for mapping nighttime lights[J]. Proceedings of the Asia-Pacific Advanced Network, 35: 62-69.
doi: 10.7125/APAN.35 |
[25] |
Fritsch F N, Carlson R E.1980. Monotone piecewise cubic interpolation[J]. SIAM Journal on Numerical Analysis, 17(2): 238-246.
doi: 10.1137/0717021 |
[26] | Han X.2018. Shape-preserving piecewise rational interpolation with higher order continuity[J]. Applied Mathematics & Computation, 337: 1-13. |
[27] | Hyndman R J, Athanasopoulos G.2014. Forecasting: Principles and practice[M]. Australia: OTexts. |
[28] |
Lee T E, Miller S D, Turk F J, et al.2006. The NPOESS VIIRS day/night visible sensor[J]. Bulletin of the American Meteorological Society, 87(2): 191-199.
doi: 10.1175/BAMS-87-2-191 |
[29] |
Levin N.2017. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites[J]. Remote Sensing of Environment, 193: 150-164.
doi: 10.1016/j.rse.2017.03.003 |
[30] |
Li X, Li D, Xu H, et al.2017. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J]. International Journal of Remote Sensing, 38(21): 5934-5951.
doi: 10.1080/01431161.2017.1331476 |
[31] |
Li X, Xu H, Chen X, et al.2013. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China[J]. Remote Sensing, 5(6): 3057-3081.
doi: 10.3390/rs5063057 |
[32] |
Li X, Zhang R, Huang C, et al.2015. Detecting 2014 Northern Iraq insurgency using night-time light imagery[J]. International Journal of Remote Sensing, 36(13): 3446-3458.
doi: 10.1080/01431161.2015.1059968 |
[33] |
Liao L B, Weiss S, Mills S, et al.2013. Suomi NPP VIIRS day-night band on-orbit performance[J]. Journal of Geophysical Research: Atmospheres, 118(22): 12705-12718.
doi: 10.1002/2013JD020475 |
[34] |
Ma T, Zhou C, Pei T, et al.2014. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China's cities[J]. Remote Sensing Letters, 5(2): 165-174.
doi: 10.1080/2150704X.2014.890758 |
[35] |
Miller S D, Straka W, Mills S P, et al.2013. Illuminating the capabilities of the Suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band[J]. Remote Sensing, 5(12): 6717-6766.
doi: 10.3390/rs5126717 |
[36] | Mills S, Weiss S, Liang C.2013. VIIRS day/night band (DNB) stray light characterization and correction[C]// Proc. SPIE 8866, Earth Observing Systems XVIII. doi: 10.1117/12.2023107. |
[37] |
Qiu S, Shao X, Cao C Y, et al.2017. Assessment of straylight correction performance for the VIIRS day/night band using Dome-C and Greenland under lunar illumination[J]. International Journal of Remote Sensing, 38(21): 5880-5898.
doi: 10.1080/01431161.2017.1338786 |
[38] |
Román M O, Wang Z, Sun Q, et al.2018. NASA's Black Marble nighttime lights product suite[J]. Remote Sensing of Environment, 210: 113-143.
doi: 10.1016/j.rse.2018.03.017 |
[39] |
Shi K, Yu B, Huang Y, et al.2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data[J]. Remote Sensing, 6(2): 1705-1724.
doi: 10.3390/rs6021705 |
[40] |
Zhang Q, Wang P, Chen H, et al.2017. A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities[J]. International Journal of Remote Sensing, 38(21): 6094-6109.
doi: 10.1080/01431161.2017.1339927 |
[41] |
Zhao N, Hsu F C, Cao G, et al.2017. Improving accuracy of economic estimations with VIIRS DNB image products[J]. International Journal of Remote Sensing, 38(21): 5899-5918.
doi: 10.1080/01431161.2017.1331060 |
No related articles found! |
|