PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (10): 1314-1327.doi: 10.18306/dlkxjz.2018.10.002
Special Issue: 地理大数据
• Special Column: Young Geographer Forum • Previous Articles Next Articles
Received:
2018-08-31
Revised:
2018-10-13
Online:
2018-10-28
Published:
2018-10-28
Contact:
Yumei ZENG
E-mail:guanxuefeng@whu.edu.cn;zengyumei@whu.edu.cn
Supported by:
Xuefeng GUAN, Yumei ZENG. Research progress and trends of parallel processing, analysis, and mining of big spatiotemporal data[J].PROGRESS IN GEOGRAPHY, 2018, 37(10): 1314-1327.
Tab.2
Comparison of high-performance computing models and frameworks"
并行计算模型 分类 | 并行计算模型/框架 | 出现时间 | 支持硬件 | 并行粒度 | 内存访问模型 | 性能优势 | 不足 | 适用场景 |
---|---|---|---|---|---|---|---|---|
面向多核处理器的并行计算模型 | 多线程(以OpenMP为例) | 1997 | CPU、MIC | 细粒度 | 共享内存 | 实现简单,并行效率高,可移植性强 | 只适用SMP等并行环境,不适合集群,扩展性较差 | 简单处理算法级的并行与优化 |
面向众核处理器的并行计算模型 | CUDA | 2007 | GPU | 细粒度 | 共享内存 | 基于C语言,有强大的并行浮点计算能力 | 仅能在GPU硬件上使用,通用性较弱 | 适合大规模数据密集型并行计算 |
OpenCL | 2008 | CPU、GPU、FPGA等 | 细粒度 | 共享内存 | 支持跨平台和硬件体系结构编程,可移植性强 | 开发环境完善性较差,API设计缺乏一致性 | 适合异构平台计算 | |
面向分布式集群的并行计算模型 | MPI | 1992 | CPU、MIC | 细/粗粒度 | 分布式内存 | 适用于集群环境,并行算法扩展性强 | 编程模型复杂,容错性差 | 计算密集型应用 |
MapReduce | 2004 | CPU | 粗粒度 | 分布式内存 | 编程实现简单,容错性好,计算能力较强 | 模型单一,适合批处理模式,但中间结果要写入磁盘,不适合迭代运算 | 数据密集型应用、分布式数据处理 | |
Spark | 2010 | CPU | 粗粒度 | 分布式内存 | 丰富的API,减少磁盘I/O,适合迭代算法 | 内存消耗较大 | 适合图计算、迭代计算和交互式数据分析 |
Tab.3
Classification of classic NoSQL database"
分类 | 数据库 | 支持平台 | 存储性能 | 灵活性 | 复杂性 | 优势 | 不足 |
---|---|---|---|---|---|---|---|
面向Key-Value | Redis,MemcacheDB等 | Linux | 高 | 高 | 无 | 内存数据库、可实现高速读写 | 内存消耗较大,扩展性较差 |
面向列 | HBase,Cassandra等 | Linux, Windows | 高 | 中等 | 低 | 数据压缩率高,支持快速的OLAP | 没有原生的二级索引 |
面向文档 | MongoDB,CouchDB等 | Linux, Mac, Windows | 高 | 高 | 低 | 面向Document,支持空间数据管理 | 不支持事务操作,占用空间过大 |
面向图 | Neo4J,FlockDB等 | Linux, Mac, Windows | 可变 | 高 | 高 | 高精度的图算法,图查询迅速 | 没有分片存储机制,图数据结构写入性能较差 |
[1] | 程果, 景宁, 陈荦, 等. 2012. 栅格数据处理中邻域型算法的并行优化方法[J]. 国防科技大学学报, 34(4): 114-119. |
[Cheng G, Jing N, Chen L, et al.2012. Parallel optimization methods for raster data processing algorithms of neighborhood-scope[J]. Journal of National University of Defense Technology, 34(4): 114-119.] | |
[2] | 杜江, 张铮, 张杰鑫, 等. 2015. MapReduce并行编程模型研究综述[J]. 计算机科学, 42(S1): 537-541. |
[Du J, Zhang Z, Zhang J X.2015. Survey of MapReduce parallel programming model[J]. Computer Science, 42(S1): 537-541.] | |
[3] | 贾婷, 魏祖宽, 唐曙光, 等. 2010. 一种面向并行空间查询的数据划分方法[J]. 计算机科学, 37(8): 198-200. |
[Jia T, Wei Z K, Tang S G, et al.2010. New spatial data partition approach for spatial data query[J]. Computer Science, 37(8): 198-200.] | |
[4] | 隽志才, 倪安宁, 贾洪飞, 等. 2006. 两种策略下的最短路径并行算法研究与实现[J]. 系统工程理论方法应用, 15(2): 123-127. |
[Jun Z C, Ni A N, Jia H F, et al.2006. Study and implement of shortest path parallel algorithms with two strategies[J]. System Engineering-Theory Methodology Applications, 15(2): 123-127.] | |
[5] |
雷德龙, 郭殿升, 陈崇成. 2014. 基于MongoDB的矢量空间数据云存储与处理系统[J]. 地球信息科学学报, 16(4): 507-516.
doi: 10.3724/SP.J.1047.2014.00507 |
[Lei D L, Guo D S, Chen C C.2014. Vector spatial data cloud storage and processing based on MongoDB[J]. Journal of Geo-information Science, 16(4): 507-516.]
doi: 10.3724/SP.J.1047.2014.00507 |
|
[6] | 李德仁, 马军, 邵振峰. 2015. 论时空大数据及其应用[J]. 卫星应用, (9): 7-11. |
[Li D R, Ma J, Shao Z F.2015. The application of spatial temporal big data[J]. Satellite Application, (9): 7-11.] | |
[7] | 李德仁, 王树良, 李德毅. 2013. 空间数据挖掘理论与应用[M]. 北京: 科学出版社. |
[Li D R, Wang S L, Li D Y.2013. Spatial data mining theories and applications[M]. Beijing, China: Science Press.] | |
[8] |
李德仁, 张良培, 夏桂松. 2014. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 43(12): 1211-1216.
doi: 10.13485/j.cnki.11-2089.2014.0187 |
[Li D R, Zhang L P, Xia G S.2014. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaeticaet Cartographica Sinica, 43(12): 1211-1216.]
doi: 10.13485/j.cnki.11-2089.2014.0187 |
|
[9] | 李建江, 崔健, 王聃, 等. 2011. MapReduce 并行编程模型研究综述[J]. 电子学报, 39(11): 2635-2642. |
[Li J J, Cui J, Wang D, et al.2011. Survey of MapReduce parallel programming model[J]. Acta Electronica Sinica, 39(11): 2635-2642.] | |
[10] | 李绍俊, 杨海军, 黄耀欢, 等. 2017. 基于NoSQL数据库的空间大数据分布式存储策略与实践[J]. 武汉大学学报: 信息科学版, 42(2): 163-169. |
[Li S J, Yang H J, Huang Y H, et al.2017. Geo-spatial big data storage based on NoSQL database[J]. Geomatics and Information Science of Wuhan University, 42(2): 163-169.] | |
[11] | 廉捷. 2013. 基于用户特征的社交网络数据挖掘研究[D]. 北京: 北京交通大学. |
[Lian J.2013. Research on user features based data mining in social networks[D]. Beijing, China: Beijing Jiaotong University.] | |
[12] |
廖理. 2015. 基于Neo4J图数据库的时空数据存储[J]. 信息安全与技术, 6(8): 43-45.
doi: 10.3969/j.issn.1674-9456.2015.08.015 |
[Liao L.2015. Application research of Neo4J in spatio-temporal data storage[J]. Information Security and Technology, 6(8): 43-45.]
doi: 10.3969/j.issn.1674-9456.2015.08.015 |
|
[13] | 刘润涛, 安晓华, 高晓爽. 2009. 一种基于 R-树的空间索引结构[J]. 计算机工程, 35(23): 32-34. |
[Liu R T, An X H, Gao X S.2009. Spatial index structure based on R-tree[J]. Computer Engineering, 35(23): 32-34.] | |
[14] | 卢风顺, 宋君强, 银福康, 等. 2011. CPU/GPU协同并行计算研究综述[J]. 计算机科学, 38(3): 5-10. |
[Lu F S, Song J Q, Yin F K, et al.2011. Survey of CPU/GPU synergetic parallel computing[J]. Computer Science, 38(3): 5-10.] | |
[15] | 卢俊, 张保明, 黄薇, 等. 2009. 基于 GPU的遥感像数据融合IHS 变换算法[J]. 计算机工程, 35(7): 261-263. |
[Lu J, Zhang B M, Huang W, et al.2009. IHS transform algorithm of remote sensing image data fusion based on GPU[J]. Computer Engineering, 35(7): 261-263.] | |
[16] |
卢照, 师军. 2010. 并行最短路径搜索算法的设计与实现[J]. 计算机工程与应用, 46(3): 69-71.
doi: 10.3778/j.issn.1002-8331.2010.03.021 |
[Lu Z, Shi J.2010. Design and implementation of parallel shortest path search algorithm[J]. Computer Engineering and Applications, 46(3): 69-71.]
doi: 10.3778/j.issn.1002-8331.2010.03.021 |
|
[17] | 罗俊. 2016. 数据挖掘算法的并行化研究及其应用[D]. 青岛: 青岛大学 |
[Luo J. 2016. Research on parallelization of data mining algorithm and application[D]. Qingdao, China: Qingdao University.] | |
[18] | 马林. 2009. 数据重现: 文件系统原理精解与数据恢复最佳实践[M]. 北京: 清华大学出版社. |
[Ma L.2009. Shuju chongxian: Wenjian xitong yuanli jingjie yu shuju huifu zuijia shijian[M]. Beijing, China: Tsinghua University Press.] | |
[19] | 马义松, 武志刚. 2016. 基于Neo4J 的电力大数据建模及分析[J]. 电工电能新技术, 35(2): 24-29. |
[Ma Y S, Wu Z G.2016. Modeling and analysis of big data for power grid based on Neo4[J]. Advanced Technology of Electrical Engineering and Energy, 35(2): 24-29.] | |
[20] | 孟小峰, 慈祥. 2013. 大数据管理: 概念、技术与挑战[J]. 计算机研究与发展, 50(1): 146-169. |
[Meng X F, Ci X.2013. Big data management: Concepts, techniques and challenges[J]. Journal of Computer Research and Development, 50(1): 146-169.] | |
[21] | 彭晓明, 郭浩然, 庞建民. 2012. 多核处理器: 技术、趋势和挑战[J]. 计算机科学, 39(Z3): 320-326. |
[Peng X M, Guo H R, Pang J M.2012. Mutil-core processor: Technology, tendency and challenge[J]. Computer Science, 39(Z3): 320-326.] | |
[22] | 田帅. 2013. 一种基于MongoDB和HDFS的大规模遥感数据存储系统的设计与实现[D]. 杭州:浙江大学. |
[Tian S.2013. A design and implementation of large-scale remote sensing data storage system based on MongoDB and HDFS[D]. Hangzhou, China: Zhejiang University.] | |
[23] | 王鸿琰, 关雪峰, 吴华意. 2017. 一种面向CPU/GPU异构环境的协同并行空间插值算法[J]. 武汉大学学报: 信息科学版, 42(12): 1688-1695. |
[Wang H Y, Guan X F, Wu H Y.2017. A collaborative parallel spatial interpolation algorithm on oriented towards the heterogeneous CPU/GPU system[J]. Geomatics and Information Science of Wuhan University, 42(12): 1688-1695.] | |
[24] | 王凯, 曹建成, 王乃生, 等. 2015. Hadoop支持下的地理信息大数据处理技术初探[J]. 测绘通报, (10): 114-117. |
[Wang K, Cao J C, Wang N S, et al.2015. Research on GIS big data computing technologies based on Hadoop[J]. Bulletin of Surveying and Mapping, (10): 114-117.] | |
[25] | 夏大文. 2016. 基于MapReduce的移动轨迹大数据挖掘方法与应用研究[D]. 重庆: 西南大学. |
[Xia D W.2016. MapReduce: Based methodologies of mobile trajectory big data mining and its applications[D]. Chongqing, China: Southwest University.] | |
[26] | 谢欢. 2015. 大数据挖掘中的并行算法研究及应用[D]. 成都:电子科技大学. |
[Xie H. 2015. Research and application on the parallel algorithm in big data mining[D]. Chengdu, China: University of Electronic Science and Technology of China.] | |
[27] | 闫密巧, 王占宏, 王志宇. 2017. 基于 Redis的海量轨迹数据存储模型研究[J]. 微型电脑应用, 33(4): 9-11. |
[Yan M Q, Wang Z H, Wang Z Y.2017. Large-scale trajectory data storage model based on Redis[J]. Microcomputer Applications, 33(4): 9-11.] | |
[28] | 杨洪余, 李成明, 王小平, 等. 2017. CPU/GPU 异构环境下图像协同并行处理模型[J]. 集成技术, 6(5): 8-18. |
[Yang H Y, Li C M, Wang X P, et al.2017. Image cooperative parallel processing model in CPU/GPU heterogeneous environment[J]. Journal of Integration Technology, 6(5): 8-18.] | |
[29] | 杨靖宇, 张永生, 董广军. 2010. 基于GPU的遥感影像SAM分类算法并行化研究[J]. 测绘科学, 35(3): 9-11. |
[Yang J Y, Zhang Y S, Dong G J.2010. Investigation of parallel method of RS image SAM algorithmic based on GPU[J]. Science of Surveying and Mapping, 35(3): 9-11.] | |
[30] | 殷进勇, 杨阳, 徐振朋, 等. 2015. 计算存储融合: 从高性能计算到大数据[J]. 指挥控制与仿真, 37(3): 1-7. |
[Yin J Y, Yang Y, Xu Z P, et al.2015. The fusion of computing and storage:From HPC to big data[J]. Command Control & Simulation, 37(3): 1-7.] | |
[31] |
尹芳, 冯敏, 诸云强, 等. 2013. 基于开源Hadoop的矢量空间数据分布式处理研究[J]. 计算机工程与应用, 49(16): 25-29.
doi: 10.3778/j.issn.1002-8331.1301-0294 |
[Yin F, Feng M, Zhu Y Q, et al.2013. Research on vector spatial data distributed computing using Hadoop projects[J]. Computer Engineering and Applications, 49(16): 25-29.]
doi: 10.3778/j.issn.1002-8331.1301-0294 |
|
[32] | 张飞龙. 2016. 基于MongoDB遥感数据存储管理策略的研究[D]. 开封: 河南大学. |
[Zhang F L.2016. Research on the storage management strategy of remote sensing data base on MongoDB[D]. Kaifeng, China: Henan University.] | |
[33] | 张景云. 2013. 基于Redis的矢量数据组织研究[D]. 南京: 南京师范大学. |
[Zhang J Y.2013. Vector data organization research based on Redis[D]. Nanjing, China: Nanjing Normal University.] | |
[34] | 张晓兵. 2016. 基于HBase的弹性可视化遥感影像存储系统[D]. 杭州: 浙江大学. |
[Zhang X B.2016. An HBase based remote sensing elastic visualization storage system[D]. Hangzhou, China: Zhejiang University.] | |
[35] | 赵永华, 迟学斌. 2005. 基于SMP集群的MPI + OpenMP混合编程模型及有效实现[J]. 微电子学与计算机, 22(10): 7-11. |
[Zhao Y H, Chi X B.2005. MPI + OpenMP hybrid paradigms and efficient implementation base on SMP clusters[J]. Microelectronics & Computer, 22(10): 7-11.] | |
[36] | 郑坤, 付艳丽. 2015. 基于 HBase 和 GeoTools 的矢量空间数据存储模型研究[J]. 计算机应用与软件, 32(3): 23-26. |
[Zheng K, Fu Y L.2015. Research on vector spatial data storage model based on HBase and GeoTools[J]. Computer Applications and Software, 32(3): 23-26.] | |
[37] | 朱效民, 潘景山, 孙占全, 等. 2013. 基于 OpenMP 的两个地学基础空间分析算法的并行实现及优化[J]. 计算机科学, 40(2): 8-11. |
[Zhu X M, Pan J S, Sun Z Q.2013. Parallel implementation and optimization of two basic geospatial-analysis algorithms based on OpenMP[J]. Computer Science, 40(2): 8-11.] | |
[38] | Beaver D, Kumar S, Li H C, et al.2010. Finding a needle in haystack: Facebook's photo storage[C]//Usenix conference on operating systems design and implementation. USENIX Association: 47-60. |
[39] | Chang F, Dean J, Ghemawat S, et al.2008. Bigtable: A distributed storage system for structured data[J]. ACM Transactions on Computer System. 26(2): 1-26. |
[40] |
Cheng B, Guan X F, Wu H Y, et al.2016. Hypergraph+: An improved hypergraph-based task-scheduling algorithm for massive spatial data processing on master-slave platforms[J]. ISPRS International Journal of Geo-Information, 5(8): 141-157.
doi: 10.3390/ijgi5080141 |
[41] | Chester S, Crowe J. Exploraions of parallel fp_growth[EB/OL]. 2011-08-13[2018-8-31]. . |
[42] | Dagum L, Menon R.1998. OpenMP: An industry standard API for shared-memory programming[J]. IEEE Computational Science & Engineering, 5(1): 46-55. |
[43] | Dean J, Ghemawat S.2004. MapReduce: Simplified data processing on large clusters[J]. Sixth Symposium on Operating System Design and Implementation, 51(1): 137-150. |
[44] |
Dinan J, Balaji P, Buntinas D, et al.2016. An implementation and evaluation of the MPI 3.0 one-sided communication interface[J]. Concurrency and Computation: Practice and Experience, 28(17): 4385-4404.
doi: 10.1002/cpe.3758 |
[45] |
Do H-T, Limet S, Melin E.2011. Parallel computing flow accumulation in large digital elevation models[J]. Procedia Computer Science, 4(4): 2277-2286.
doi: 10.1016/j.procs.2011.04.248 |
[46] |
Garland M, Grand S L, Nickolls J, et al.2008. Parallel computing experiences with CUDA[J]. IEEE Micro, 28(4): 13-27.
doi: 10.1109/MM.2008.57 |
[47] | Ghemawat S, Gobioff H, Leung S T.2003. The Google file system[J]. Proceedings of SOSP 2003, Operating Systems Review, 37(5): 29-43. |
[48] | HDFS. 2012. HDFS architecture guide[EB/OL]. 2012-10-02[2018-08-31]. . |
[49] | Hecht R, Jablonski S.2012. NoSQL evaluation: A use case oriented survey[C]//International conference on cloud and service computing (ICSC). IEEE, 336-341. |
[50] | Hong S, Oguntebi T, Olukotun K.2011. Efficient parallel graph exploration on multi-core CPU and GPU[C]//International conference on parallel architectures and compilation techniques. IEEE Computer Society: 78-88. |
[51] |
Javier D, Camelia M-C, Alfonso N.2012. A survey of parallel programming models and tools in the multi and many-core era[J]. IEEE Transactions on Parallel and Distributed System, 23(8): 1369-1386.
doi: 10.1109/TPDS.2011.308 |
[52] | Langendoen H F.1995. Parallelizing the polygon overlay problem using Orca[D]. Amsterdam, Holland: Vrije Universiteit Amsterdam. |
[53] |
Lanthier M, Nussbaum D, Sack J R.2003. Parallel implementation of geometric shortest path algorithms[J]. Parallel Computing, 29(10): 1445-1479.
doi: 10.1016/j.parco.2003.05.004 |
[54] |
Li X, Li D R.2014. Can night-time light images play a role in evaluating the Syrian Crisis[J]. International Journal of Remote Sensing, 35(18): 6648-6661.
doi: 10.1080/01431161.2014.971469 |
[55] | Manyika J, Chui M, Brown B, et al.2011. Big data: The next frontier for innovation, competition, and productivity[R]. Chicago, IL: The McKinsey Global Institute: 1-156. |
[56] |
Nickolls J, Dally W J.2010. The GPU computing era[J]. IEEE Micro, 30(2): 56-69.
doi: 10.1109/MM.2010.41 |
[57] | NoSQL. 2009. NoSQL definition: Next generation databases mostly addressing some of the points: Being non-relational, distributed, open-source and horizontally scalable[EB/OL]. 2009-06-11[2018-08-31]. . |
[58] | NVIDIA.2017. NVIDIA Tesla V100 GPU architecture: The world's most advanced data center GPU[J/OL]. 2017-08-30[2018-08-31]. . |
[59] |
Qatawneh M, Sleit A, Almobaideen W.2009. Parallel implementation of polygons clipping using transputer[J]. American Journal of Applied Sciences, 6(2): 214-218.
doi: 10.3844/ajassp.2009.214.218 |
[60] | Qin C Z, Zhan L J.2012. Parallelizing flow-accumulation calculations on graphics processing units: From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm[J]. Computers & Geosciences, 43(6): 7-16. |
[61] |
Qin C Z, Zhan L J, Zhu A X, et al.2014. A strategy for raster-based geocomputation under different parallel computing platforms[J]. International Journal of Geographical Information Science, 28(11): 2127-2144.
doi: 10.1080/13658816.2014.911300 |
[62] |
Waldrop M.2008. Big data: Wikiomics[J]. Nature, 455: 22-25.
doi: 10.1038/455022a |
[63] | Wilson G V.1994. Assessing the usability of parallel programming systems: The Cowichan problems[M]//Decker K M, Rehmann R M. Programming environments for massively parallel distributed systems. Basal, Switzerland: Birkhäuser: 183-193. |
[64] | Wu H Y, Guan X F, Gong J Y.2011. ParaStream: A parallel streaming delaunay triangulation algorithm for lidar points on multicore architectures[J]. Computers & Geosciences, 37(9): 1355-1363. |
[65] | Xu G H.1999. Pay much attention to the digital earth by the social[J]. Science News Weekly, (1): 7-8. |
[66] | Xu M, Cao H, Wang C Y.2014. Raster-based parallel multiplicatively weighted voronoi diagrams algorithm with MapReduce[M]//Cao B Y, Ma S Q, Cao H H. Ecosystem assessment and fuzzy systems management. New York: Springer International Publishing: 177-188. |
[67] | Zaharia M, Xin R S, Wendell P, et al.2016. Apache spark: A unified engine for big data processing[J]. Communications of the ACM, 59(11): 56-65. |
[68] |
Zhang T H, Zhu Z M, Gong W, et al.2018. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals[J]. Remote Sensing of Environment, 216(10): 91-104.
doi: 10.1016/j.rse.2018.06.030 |
[69] |
Zhao M, Cheng W M, Zhou C H, et al.2018. Assessing spatiotemporal characteristics of urbanization dynamics in Southeast Asia using time series of DMSP/OLS nighttime light data[J]. Remote Sensing, 10(1): 47-66.
doi: 10.3390/rs10010047 |
[1] | Mingqing MA, Wu YUAN, Quansheng GE, Wen YUAN, Linsheng YANG, Hanqing LI, Meng LI. Big data analysis of social development situation in regions along the Belt and Road [J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1009-1020. |
[2] | Weishi YANG, Danhuai GUO, Yanling LU, Deqiang WANG, Yinqiu ZHU, Baoxiu ZHANG. Analyzing perception of cultural heritage sites based on big data: A case study of Beijing Central Axis [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1111-1118. |
[3] | Xi HUANG, Zhonggen WANG, Yanfang SANG, Moyuan YANG, Xiaocong LIU, Tongliang GONG. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 339-348. |
[4] | SONG Ci, PEI Tao. Research Progress in Time Series Clustering Methods Based on Characteristics [J]. PROGRESS IN GEOGRAPHY, 2012, 31(10): 1307-1317. |
[5] | GONG Xi, PEI Tao, SUN Jia, LUO Ming. Review of the Research Progresses in Trajectory Clustering Methods [J]. PROGRESS IN GEOGRAPHY, 2011, 30(5): 522-534. |
[6] | GE Ying|WU Ye. Geographic Effects and Agglomeration Evolution: A Data-mining Analysis [J]. PROGRESS IN GEOGRAPHY, 2009, 28(6): 855-862. |
[7] | ZHANG Xuewu, SU FenZhen, SHI Yishao, ZHANG Dandan. Resear ch on Progr ess of Spatial Association Rule Mining [J]. PROGRESS IN GEOGRAPHY, 2007, 26(6): 123-132. |
[8] | WANG Zheng,SUI Wenjuan,YAO Zixuan,LIAO Beiyu,WU Yiping. Geocomputation and Frontier Resear ch [J]. PROGRESS IN GEOGRAPHY, 2007, 26(4): 1-10. |
[9] | FANG Zhaobao, LIN Hui, WU Lixin, JIANG Jixi. To Reduce MCSs Spatial Data Database Using Correlation Analytical Method [J]. PROGRESS IN GEOGRAPHY, 2004, 23(3): 27-33. |
|