PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (8): 1106-1118.doi: 10.18306/dlkxjz.2018.08.010
• Articles • Previous Articles Next Articles
Weijing ZHONG1(), De WANG2,*(
)
Received:
2017-11-03
Revised:
2018-01-07
Online:
2018-09-04
Published:
2018-09-04
Contact:
De WANG
E-mail:wjzhong0705@126.com;dewang@tongji.edu.cn
Supported by:
Weijing ZHONG, De WANG. Urban space study based on the temporal characteristics of residents' behavior[J].PROGRESS IN GEOGRAPHY, 2018, 37(8): 1106-1118.
Tab.1
Comparison of record changes between weekdays and weekends"
时间段 | 平日 | 周末 | |||
---|---|---|---|---|---|
平均记录量/(万条/日) | 占全天比重/% | 平均记录量/(万条/日) | 占全天比重/% | ||
0-2点 | 1007.73 | 3.19 | 1032.63 | 4.11 | |
2-4点 | 835.54 | 2.64 | 832.24 | 3.31 | |
4-6点 | 853.44 | 2.70 | 814.41 | 3.24 | |
6-8点 | 1354.93 | 4.28 | 1170.88 | 4.66 | |
8-10点 | 2994.38 | 9.46 | 2332.47 | 9.28 | |
10-12点 | 4219.40 | 13.34 | 3280.88 | 13.05 | |
12-14点 | 3594.96 | 11.36 | 2888.69 | 11.49 | |
14-16点 | 4043.63 | 12.78 | 2955.90 | 11.76 | |
16-18点 | 4353.91 | 13.76 | 2913.00 | 11.59 | |
18-20点 | 3658.56 | 11.56 | 2771.23 | 11.02 | |
20-22点 | 2955.58 | 9.34 | 2507.26 | 9.97 | |
22-24点 | 1766.10 | 5.58 | 1644.71 | 6.54 | |
合计 | 31638.15 | 100.00 | 25144.31 | 100.00 |
Tab.2
Spatial clustering results of the city center of Shanghai"
周末活跃区 | 平日活跃区 | 平日周末均衡区 | 其他 | 总计 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
持续型 | 短时型 | 差异较小型 | 差异较大型 | 昼间波动型 | 昼夜波动型 | 夜间波动型 | |||||
特征 | 周末活动强度明显强于平日,且其白天的高强度活动有一定持续性 | 周末活动强度明显强于平日,且其白天的高强度活动只在下午时段出现 | 平日活动强度明显强于周末,且两者差异较小 | 平日活动强度明显强于周末,而两者差异较大 | 平日周末活动均衡,且昼夜波动小,白天波动较大 | 平日周末活动均衡,且昼夜活动强度都有所波动 | 平日周末活动均衡,且夜间强度明显下降,波动 较大 | 周末活动强度有所下降 | |||
分布 | 闵行体育公园东侧居住区和市场 | 顾村公园南侧 | 内环内的核心活动区域 | 典型的集中就业区 | 大型居住区 | 功能多样的混合地带 | 集中购物休闲区 | 均衡区和平日活跃区之间 | |||
面积/km2 | 6.60 | 2.84 | 57.76 | 56.88 | 271.40 | 85.60 | 21.08 | 176.32 | 678.48 | ||
占比/% | 0.97 | 0.42 | 8.51 | 8.38 | 40.00 | 12.62 | 3.11 | 25.09 | 100.00 | ||
第一大类用地 | 居住用地 | 非建设用地 | 居住用地 | 工业用地 | 居住用地 | 居住用地 | 居住用地 | 居住用地 | |||
用地占比/% | 44.85 | 21.13 | 31.09 | 31.08 | 46.03 | 37.66 | 38.71 | 25.34 | |||
第二大类 用地 | 公共设施 用地 | 绿地 | 道路广场 用地 | 公共设施 用地 | 工业用地 | 工业用地 | 公共设施 用地 | 工业用地 | |||
用地占比/% | 26.67 | 21.13 | 22.99 | 20.89 | 9.80 | 11.78 | 23.15 | 19.46 | |||
第三大类 用地 | 对外交通 用地 | 村镇建设 用地 | 公共设施 用地 | 村镇建设 用地 | 公共设施 用地 | 公共设施 用地 | 绿地 | 公共设施 用地 | |||
用地占比/% | 8.48 | 16.90 | 21.33 | 17.86 | 9.20 | 9.91 | 11.01 | 11.86 |
[1] |
柴彦威, 申悦, 马修军, 等. 2013. 北京居民活动与出行行为时空数据采集与管理[J]. 地理研究, 32(3): 441-451.
doi: 10.11821/yj2013030006 |
[Chai Y W, Shen Y, Ma X J, et al.2013. The collection and management of space-time data of individual behavior based on location-based technologies: A case study of activity-travel survey in Beijing[J]. Geographical Research, 32(3): 441-451.]
doi: 10.11821/yj2013030006 |
|
[2] | 柴彦威, 沈洁. 2008. 基于活动分析法的人类空间行为研究[J]. 地理科学, 28(5): 594-600. |
[Chai Y W, Shen J.2008. Acitivity-based approach to human spatial behavior research[J]. Scientia Geographica Sinica, 28(5): 594-600.] | |
[3] |
柴彦威, 塔娜. 2013. 中国时空间行为研究进展[J]. 地理科学进展, 32(9): 1362-1373.
doi: 10.11820/dlkxjz.2013.09.006 |
[Chai Y W, Ta N.2013. Progress in space-time behavior research in China[J]. Progress in Geography, 32(9): 1362-1373.]
doi: 10.11820/dlkxjz.2013.09.006 |
|
[4] |
龚玺, 裴韬, 孙嘉, 等. 2011. 时空轨迹聚类方法研究进展[J]. 地理科学进展, 30(5): 522-534.
doi: 10.11820/dlkxjz.2011.05.002 |
[Gong X, Pei T, Sun J, et al.2011. Review of the research progresses in trajectory clustering methods[J]. Progress in Geography, 30(5): 522-534.]
doi: 10.11820/dlkxjz.2011.05.002 |
|
[5] | 郭璨, 甄峰, 朱寿佳. 2014. 智能手机定位数据应用于城市研究的进展与展望[J]. 人文地理, 29(6): 18-23. |
[Guo C, Zhen F, Zhu S J.2014. Progress and prospect of the application of smart phone LBS data in urban researches[J]. Human Geography, 29(6): 18-23.] | |
[6] |
钮心毅, 丁亮, 宋小冬. 2014. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, (6): 61-67.
doi: 10.3969/j.issn.1000-3363.2014.06.009 |
[Niu X Y, Ding L, Song X D.2014. Understanding urban spatial structure of Shanghai central city based on mobile phone data[J]. Urban Planning Forum, (6): 61-67.]
doi: 10.3969/j.issn.1000-3363.2014.06.009 |
|
[7] |
秦萧, 甄峰, 熊丽芳, 等. 2013. 大数据时代城市时空间行为研究方法[J]. 地理科学进展, 32(9): 1352-1361.
doi: 10.11820/dlkxjz.2013.09.005 |
[Qin X, Zhen F, Xiong L F, et al.2013. Methods in urban temporal and spatial behavior research in the Big Data Era[J]. Progress in Geography, 32(9): 1352-1361.]
doi: 10.11820/dlkxjz.2013.09.005 |
|
[8] |
宋辞, 裴韬. 2012. 基于特征的时间序列聚类方法研究进展[J]. 地理科学进展, 31(10): 1307-1317.
doi: 10.11820/dlkxjz.2012.10.008 |
[Song C, Pei T.2012. Research progress in time series clustering methods based on characteristics[J]. Progress in Geography, 31(10): 1307-1317.]
doi: 10.11820/dlkxjz.2012.10.008 |
|
[9] | 王德, 王灿, 谢栋灿, 等. 2015. 基于手机信令数据的上海市不同等级商业中心商圈的比较: 以南京东路、五角场、鞍山路为例[J]. 城市规划学刊, (3): 51-61. |
[Wang D, Wang C, Xie D C, et al.2015. Comparison of retail trade areas of retail centers with different hierarchical levels: A case study of east Nanjing road, Wujiaochang, Anshan road in Shanghai[J]. Urban Planning Forum, (3): 51-61.] | |
[10] | 王德, 钟炜菁, 谢栋灿, 等. 2015. 手机信令数据在城市建成环境评价中的应用: 以上海市宝山区为例[J]. 城市规划学刊, (5): 82-90. |
[Wang D, Zhong W J, Xie D C, et al.2015. The application of cell phone signaling data in the assessment of urban built environment: A case study of Baoshan district in Shanghai[J]. Urban Planning Forum, (5): 82-90.] | |
[11] |
吴康敏, 张虹鸥, 王洋, 等. 2016. 广州市多类型商业中心识别与空间模式[J]. 地理科学进展, 35(8): 963-974.
doi: 10.18306/dlkxjz.2016.08.005 |
[Wu K M, Zhang H O, Wang Y, et al.2016. Identify of the multiple types of commercial center in Guangzhou and its spatial pattern[J]. Progress in Geography, 35(8): 963-974.]
doi: 10.18306/dlkxjz.2016.08.005 |
|
[12] |
谢永俊, 彭霞, 黄舟, 等. 2017. 基于微博数据的北京市热点区域意象感知[J]. 地理科学进展, 36(9): 1099-1110.
doi: 10.18306/dlkxjz.2017.09.006 |
[Xie Y J, Peng X, Huang Z, et al.2017. Image perception of Beijing's regional hotspots based on microblog data[J]. Progress in Geography, 36(9): 1099-1110.]
doi: 10.18306/dlkxjz.2017.09.006 |
|
[13] | 杨微石, 郭旦怀, 逯燕玲, 等. 2017. 基于大数据的文化遗产认知分析方法: 以北京旧城中轴线为例[J]. 地理科学进展, 36(9): 1111-1118. |
[Yang W S, Guo D H, Lu Y L, et al.2017. Analyzing perception of cultural heritage sites based on big data: A case study of Beijing Central Axis[J]. Progress in Geography, 36(9): 1111-1118.] | |
[14] |
杨振山, 龙瀛, Douay N.2015. 大数据对人文: 经济地理学研究的促进与局限[J]. 地理科学进展, 34(4): 410-417.
doi: 10.11820/dlkxjz.2015.04.002 |
[Yang Z S, Long Y, Douay N.2015. Opportunities and limitations of big data applications to human and economic geography: The state of the art[J]. Progress in Geography, 34(4): 410-417.]
doi: 10.11820/dlkxjz.2015.04.002 |
|
[15] | 易峥, 李继珍, 冷炳荣, 等. 2017. 基于微博语义分析的重庆主城区风貌感知评价[J]. 地理科学进展, 36(9): 1058-1066. |
[Yi Z, Li J Z, Leng B R, et al.2017. Perception and evaluation of cityscape characteristics using semantic analysis on microblog in the main urban area of Chongqing Municipality[J]. Progress in Geography, 36(9): 1058-1066.] | |
[16] |
尹芹, 孟斌, 张丽英. 2016. 基于客流特征的北京地铁站点类型识别[J]. 地理科学进展, 35(1): 126-134.
doi: 10.18306/dlkxjz.2016.01.014 |
[Yin Q, Meng B, Zhang L Y.2016. Classification of subway stations in Beijing based on passenger flow characteristics[J]. Progress in Geography, 35(1): 126-134.]
doi: 10.18306/dlkxjz.2016.01.014 |
|
[17] |
张文忠, 李业锦. 2006. 北京城市居民消费区位偏好与决策行为分析: 以西城区和海淀中心地区为例[J]. 地理学报, 61(10): 1037-1045.
doi: 10.3321/j.issn:0375-5444.2006.10.003 |
[Zhang W Z, Li Y J.2006. Study on residents' shopping location preference and shopping location choice: A case on Xicheng and Haidian districts of Beijing[J]. Acta Geographica Sinica. 61(10): 1037-1045.]
doi: 10.3321/j.issn:0375-5444.2006.10.003 |
|
[18] | 甄峰, 席广亮, 秦萧. 2015. 基于地理视角的智慧城市规划与建设的理论思考[J]. 地理科学进展, 34(4): 402-409. |
[Zhen F, Xi G L, Qin X.2015. Smart city planning and construction based on geographic perspectives: Some theoretical thinking[J]. Progress in Geography, 34(4): 402-409.] | |
[19] |
钟炜菁, 王德, 谢栋灿, 等. 2017. 上海市人口分布与空间活动的动态特征研究: 基于手机信令数据的探索[J]. 地理研究, 36(5): 972-984.
doi: 10.11821/dlyj201705013 |
[Zhong W J, Wang D, Xie D C, et al.2017. Dynamic characteristics of Shanghai's population distribution using cell phone signaling data[J]. Geographical Research, 36(5): 972-984.]
doi: 10.11821/dlyj201705013 |
|
[20] | 朱玮, 王德. 2008. 南京东路消费者的空间选择行为与回游轨迹[J]. 城市规划, (3): 33-40. |
[Zhu W, Wang D.2008. Space choice behavior and multi-stop tracks of consumers in east Nanjing road[J]. City Planning Review. (3): 33-40.] | |
[21] |
Bodenhofer U, Kothmeier A, Hochreiter S.2011. APCluster: An R package for affinity propagation clustering[J]. Bioinformatics, 27(17): 2463-2464.
doi: 10.1093/bioinformatics/btr406 pmid: 21737437 |
[22] |
Calabrese F, Colonna M, Lovisolo P, et al.2011. Real-time urban monitoring using cell phones: A case study in Rome[J]. IEEE Transactions on Intelligent Transportation Systems, 12(1): 141-151.
doi: 10.1109/TITS.2010.2074196 |
[23] |
Calabrese F, Reades J, Ratti C.2010. Eigenplaces: Segmenting space through digital signatures[J]. IEEE Pervasive Computing, 9(1): 78-84.
doi: 10.1109/MPRV.2009.62 |
[24] | Clark C.1951. Urban population densities[J]. Journal of the Royal Statistical Society: Series A, 114(4): 490-496. |
[25] |
Frey B J, Dueck D.2007. Clustering by passing messages between data points[J]. Science, 315: 972-976.
doi: 10.1126/science.1136800 pmid: 17218491 |
[26] | Gollege R G.1997. Spatial behavoir: A geographical perspective[M]. New York: Guilford Press. |
[27] | Hagerstrand T.1970. What about people in regional science?[J]. Papers in Regional Science, 24(1): 7-24. |
[28] | Iovan C, Olteanu-Raimond A M, Couronné T, et al.2013. Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies[M]//Vandenbroucke D, Bucher B, Crompvoets J. Geographic Information Science at the Heart of Europe. Berlin, Germany: Springer: 247-265. |
[29] |
Liu Y, Liu X, Gao S, et al.2015. Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 105(3): 512-530.
doi: 10.1080/00045608.2015.1018773 |
[30] |
Pei T, Sobolevsky S, Ratti C, et al.2014. A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 28(9): 1988-2007.
doi: 10.1080/13658816.2014.913794 |
[31] |
Reades J, Calabrese F, Sevtsuk A, et al.2007. Cellular census: Explorations in urban data collection[J]. IEEE Pervasive Computing, 6(3): 30-38.
doi: 10.1109/MPRV.2007.53 |
[32] |
Rubio A, Sanchez A, Frias-Martinez E.2013. Adaptive non-parametric identification of dense areas using cell phone records for urban analysis[J]. Engineering Applications of Artificial Intelligence, 26(1): 551-563.
doi: 10.1016/j.engappai.2012.05.005 |
[33] | Sevtsuk A, Ratti C.Explorations into urban mobility patterns using aggregate mobile network data[R]. MIT Portugal Program, 2008. |
[34] | Vajakas T, Vajakas J, Lillemets R.2015. Trajectory reconstruction from mobile positioning data using cell-to-cell travel time information[J]. International Journal of Geographical Information Science, 29(11): 1941-1954. |
[35] | Yang X, Fang Z, Xu Y, et al.2016. Understanding spatiotemporal patterns of human convergence and divergence using mobile phone location data[J]. ISPRS International Journal of Geo-Information, 5(10): 177. doi:10.3390/ijgi5100177. |
|