PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (4): 465-475.doi: 10.18306/dlkxjz.2018.04.002
• Special Column: Young Geographer Forum • Previous Articles Next Articles
Received:
2018-02-28
Revised:
2018-04-10
Online:
2018-04-20
Published:
2018-04-20
Supported by:
Zhenming JI. Advances and prospects of research on simulating transboundary black carbon and their climatic effects over the Tibetan Plateau[J].PROGRESS IN GEOGRAPHY, 2018, 37(4): 465-475.
[1] |
卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径[J]. 大气科学, 35(5): 897-902.
doi: 10.3878/j.issn.1006-9895.2011.05.09 |
[Bian J C, Yan R C, Chen H B.2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 35(5): 897-902.]
doi: 10.3878/j.issn.1006-9895.2011.05.09 |
|
[2] | 陈德亮, 徐柏青, 姚檀栋, 等. 2015. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 60(32): 3025-3035. |
[Chen D L, Xu B Q, Yao T D, et al.2015. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 60(32): 3025-3035.] | |
[3] | 王志立, 张华, 郭品文. 2009. 南亚地区黑碳气溶胶对亚洲夏季风的影响[J]. 高原气象, 28(2): 419-424. |
[Wang Z L, Zhang H, Guo P W.2009. Effects of black carbon aerosol in South Asia on Asian summer monsoon[J]. Plateau Meteorology, 28(2): 419-424.] | |
[4] | 张玉兰, 康世昌. 2017. 青藏高原及周边地区冰川中吸光性杂质及其影响研究进展[J]. 科学通报, 62(35): 4151-4162. |
[Zhang Y L, Kang S C.2017. Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings[J]. Chinese Science Bulletin, 62(35): 4151-4162.] | |
[5] |
Cong Z Y, Kang S C, Gao S P, et al.2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record[J]. Environmental Science & Technology, 47(6): 2579-2586.
doi: 10.1021/es3048202 pmid: 23402524 |
[6] |
Flanner M G, Shell K M, Barlage M, et al.2011. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 4: 151-155.
doi: 10.1038/ngeo1062 |
[7] |
Gao X J, Giorgi F.2017. Use of the RegCM system over East Asia: Review and perspectives[J]. Engineering, 3(5): 766-772.
doi: 10.1016/J.ENG.2017.05.019 |
[8] |
Giorgi F, Coppola E, Solmon F, et al.2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 52: 7-29.
doi: 10.3354/cr01018 |
[9] |
Ji Z M.2016. Modeling black carbon and its potential radiative effects over the Tibetan Plateau[J]. Advances in Climate Change Research, 7(3): 139-144.
doi: 10.1016/j.accre.2016.10.002 |
[10] |
Ji Z M, Kang S C.2013. Double nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 70(4): 1278-1290.
doi: 10.1175/JAS-D-12-0155.1 |
[11] |
Ji Z M, Kang S C.2015. Evaluation of extreme climate events using a regional climate model for China[J]. International Journal of Climatology, 35(6): 888-902.
doi: 10.1002/joc.4024 |
[12] |
Ji Z M, Kang S C, Cong Z Y, et al.2015. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: Distribution, transportation, deposition, and climatic effects[J]. Climate Dynamics, 45(9-10): 2831-2846.
doi: 10.1007/s00382-015-2509-1 |
[13] |
Ji Z M, Kang S C, Zhang D F, et al.2011. Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon[J]. Climate Dynamics, 36(9-10): 1633-1647.
doi: 10.1007/s00382-010-0982-0 |
[14] |
Ji Z M, Kang S C, Zhang Q G, et al.2016. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model[J]. Atmospheric Research, 178-179: 484-496.
doi: 10.1016/j.atmosres.2016.05.003 |
[15] |
Kang S C, Cong Z Y.2016. Atmospheric black carbon and its effects on cryosphere[J]. Advances in Climate Change Research, 7(3): 113-114.
doi: 10.1016/j.accre.2016.09.005 |
[16] |
Kang S C, Huang J, Wang F Y, et al.2016. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau[J]. Environmental Science & Technology, 50(6): 2859-2869.
doi: 10.1021/acs.est.5b04172 pmid: 26878654 |
[17] |
Kang S C, Xu Y W, You Q L, et al.2010. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 5(1): 015101.
doi: 10.1088/1748-9326/5/1/015101 |
[18] |
Li C L, Bosch C, Kang S C, et al.2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications, 7: 12574.
doi: 10.1038/ncomms12574 pmid: 4996979 |
[19] |
Lüthi Z L, Škerlak B, Kim S-W, et al.2015. Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas[J]. Atmospheric Chemistry and Physics, 15(11): 6007-6021.
doi: 10.5194/acpd-14-28105-2014 |
[20] |
Marcella M P, Eltahir E A B.2010. Effects of mineral aerosols on the summertime climate of southwest Asia: Incorporating subgrid variability in a dust emission scheme[J]. Journal of Geophysical Research: Atmospheres, 115(D18): D18203.
doi: 10.1029/2010JD014036 |
[21] |
Matthew J, Susan K, Kang S C, et al.2016. Tibetan Plateau Geladaindong black carbon ice core record (1843-1982): Recent increases due to higher emissions and lower snow accumulation[J]. Advances in Climate Change Research, 7(3): 132-138.
doi: 10.1016/j.accre.2016.07.002 |
[22] |
Nair V S, Solmon F, Giorgi F, et al.2012. Simulation of south Asian aerosols for regional climate studies[J]. Journal of Geophysical Research: Atmospheres, 117(D4): D04209.
doi: 10.1029/2011JD016711 |
[23] |
Pal J S, Giorgi F, Bi X Q, et al.2007. Regional climate modeling for the developing World: The ICTP RegCM3 and RegCNET[J]. Bulletin of the American Meteorological Society, 88(9): 1395-1409.
doi: 10.1175/BAMS-88-9-1395 |
[24] |
Qian Y, Yasunari T J, Doherty S J, et al.2015. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact[J]. Advances in Atmospheric Sciences, 32(1): 64-91.
doi: 10.1007/s00376-014-0010-0 |
[25] |
Ramanathan V, Carmichael G.2008. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 1: 221-227.
doi: 10.1038/ngeo156 |
[26] |
Ramanathan V, Ramana M V, Roberts G, et al.2007. Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 448: 575-578.
doi: 10.1038/nature06019 pmid: 17671499 |
[27] |
Solmon F, Elguindi N, Mallet M.2012. Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model[J]. Climate Research, 52: 97-113.
doi: 10.3354/cr01039 |
[28] |
Xia X G, Zong X M, Cong Z Y, et al.2011. Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia[J]. Atmospheric Environment, 45(39): 7370-7378.
doi: 10.1016/j.atmosenv.2011.07.067 |
[29] |
Yang J H, Duan K Q, Kang S C, et al.2017. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain[J]. Climate Dynamics, 48(9-10): 2901-2917.
doi: 10.1007/s00382-016-3240-2 |
[30] |
Yang J H, Kang S C, Ji Z M, et al.2018. Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions[J]. Journal of Geophysical Research: Atmospheres, 123(2): 671-692.
doi: 10.1002/2017JD027282 |
[31] |
Zhang D F, Zakey A S, Gao X J, et al.2009. Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model[J]. Atmospheric Chemistry and Physics, 9(4): 1095-1110.
doi: 10.5194/acpd-8-4625-2008 |
[32] |
Zhang Y L, Kang S C, Sprenger M, et al.2018. Black carbon and mineral dust in snow cover on the Tibetan Plateau[J]. The Cryosphere, 12(2): 413-431.
doi: 10.5194/tc-12-413-2018 |
[1] | SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139. |
[2] | CHEN Rui, YANG Meixue, WAN Guoning, WANG Xuejia. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1944-1958. |
[3] | ZHANG Chun, CHENG Zhihua, YU Xiaoping, WANG Yaqun, SHEN Chen. Impact of public transportation infrastructure on employment of the low-income group in Urumqi [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 111-119. |
[4] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[5] | DU Chao, WANG Jiaoe, LIU Binquan, HUANG Dingxi. Impacts of street and public transport network centralities on housing rent:A case study of Beijing [J]. PROGRESS IN GEOGRAPHY, 2019, 38(12): 1831-1842. |
[6] | Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932. |
[7] | Guoqing ZHANG. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations [J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 214-223. |
[8] | Yanxin ZHU, Yanfang SANG. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1533-1544. |
[9] | Chong LIU, Liping ZHU, Junbo WANG, Baojin QIAO, Jianting JU, Lei HUANG. Remote sensing-based estimation of lake water clarity on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2017, 36(5): 597-609. |
[10] | Haibing JIANG, Wenzhong ZHANG, Sheng WEI. Public service facility accessibility as influenced by public transportation in Beijing [J]. PROGRESS IN GEOGRAPHY, 2017, 36(10): 1239-1249. |
[11] | Xueying MA, Jing'an SHAO, Xinliang XU. Rural transportation accessibility in mountainous areas based on the entropy-weight TOPSIS method: A case study of Shizhu County, Chongqing Municipality [J]. PROGRESS IN GEOGRAPHY, 2016, 35(9): 1144-1154. |
[12] | Xuan ZHAN, Aiwen LIN, Cheng SUN, Wei QIAO. Centrality of public transportation network and its coupling with bank branches distribution in Wuhan City [J]. PROGRESS IN GEOGRAPHY, 2016, 35(9): 1155-1166. |
[13] | Jue JI, Xiaolu GAO, Xingchen LIU. Multi-objective evaluation of urban transportation efficiency:Take Beijing as an example [J]. PROGRESS IN GEOGRAPHY, 2016, 35(1): 118-125. |
[14] | Xiaoshu CAO, Tao LI, Wenyue YANG, Xiaoyan HUANG, Jiangbin YIN, Yongwei LIU, Feiwen LIANG, Wulin WANG, Miaomiao WANG, Huiling CHEN, Baixian ZHANG. Accessibility and urban spatial connections of cities in the Silk Road Economic Belt based on land transportation [J]. PROGRESS IN GEOGRAPHY, 2015, 34(6): 657-664. |
[15] | Xiaoshu CAO, Wenyue YANG, Xiaoyan HUANG. Aaccessibility and CO2 emissions from travel of smart transportation: theory and empirical studies [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 418-429. |
|